5シリンダ油圧復動プレスによる自動車用ヘリカルギヤの成形
Precision Cold Die Forging of Helical Gear for Actual Automobile by Multi-action Press

小倉真義/Masayoshi Ogura・小倉製鉄所 条鋼技術部 専任部長
訓谷法仁/Norihito Kantani・小倉製鉄所 条鋼技術部 開発室 参事補

要約
「材料から最終の鋳造製品までをオールスルーで、ユーザーとともに検討開発することを目的として、当社は小倉製鉄所に、5シリンダー油圧復動プレス「鋳造シミュレータ」を導入した。このプレスを用いて、自動車のトランスミッション用ヘリカルギヤの成形実験を行った結果、流体の「筋を流れの原理」を採用することにより、材料の変形抵抗の3.3倍という低い面圧で、歯先まで充分に材料の充満した精度の良い歯車を作ることができた。
以下に、導入した設備の概要と実験の結果について紹介する。

Synopsis
This report deals with a new near-net shape forging process for automobile transmission helical gear by using a multi-action hydraulic press which has recently been set up in Kokura Steel Works.
An actual automobile helical gear with completely filled tooth-tops was formed successfully by adopting divided flow method.
The accuracy for the gear was in JIS 2 or 3 grade and the forming pressure was as low as 3.3 times the material's flow stress.

1. 5シリンダ油圧制御・鋳造シミュレータ
1-1 導入のねらい
パルプ崩壊化を求める厳しい経済情勢の中で、自動車メーカーを初めとした鋳造関連メーカーは、生き残りをかけて、「地球環境対応」と「低コスト化」のための激しい技術開発競争を展開している。「地球環境対応」では、自動車用鋳造部品の高強化化による小型化や軽量化に加え、大幅な「低コスト化」を進めるためには、工法の大幅な変更により、これまでできなかった複雑形状部品の新規形状品の1部品化、あるいはネットシェイプ化、他による工程の省略を進めている。

このようにして、鋳造品の低コスト化、小型、軽量化、高機能化に対する要求がますます厳しくなり、それに応じて、鉄鋼に対するユーザー側からの要求もますます高まると、また、多岐にわたっている。例えば、冷間鍛造製品用の材料選定に当たっては、成形工程では、変形抵抗と変形能が、切削工程では、工具寿命や切粉の処理性が、熱処理工程では、焼入れ特性や焼入れ歪み特性が、最終製品についても問題特性が、そして全工程にわたっての環境への影響がそれぞれ要求され、様々な検討がされている。
これらのニーズに端末メーカーとして対応するために、次のように材料選定から最終製品までをオールスルーでユーザーとともに検討し、鉄鋼の特性、機能、特性、特性を最大限に引き出して行く材料と製品製造工法を選定してゆく必要がある。ここに弊社が繰り後14日以内に鋳造シミュレータを導入したねらいがあり、各ユーザーの最後の成形条件まで、再現でき、実際の成形が可能なプレスの導入を図ることとしたものである。

1-2 設備の特徴
導入した設備の基本仕様とシステムの構成を第1表および第2図に示す。また、この設備の特徴は下記のとおりである。
(1) 上に3シリンダー、下に2シリンダーを備えた油圧式復動プレスであり、それぞれのシリンダーに取り付けられた工具は、あらかじめ設定した線図に基づいて、コンピュータにより任意に制御することができる。したがって、複雑形状部品の閉塞鋳造や各種複合成形が可能となっている。
第1表 鉄造シミュレータの基本仕様

Table 1 Specification of multi-action press

<table>
<thead>
<tr>
<th>項目</th>
<th>開発鉄造</th>
<th>通常鉄造</th>
</tr>
</thead>
<tbody>
<tr>
<td>動作ラム</td>
<td>上：メイン、インナ、コア 下：ベッド、KO</td>
<td>上：メイン</td>
</tr>
<tr>
<td>加圧能力</td>
<td>メイン：max 500 ton インナ・ベッド：max 200 ton コア・KO：max 15 ton</td>
<td></td>
</tr>
<tr>
<td>ストローク</td>
<td>メイン：400 mm（加圧200 mm） インナ・ベッド：200 mm（加圧200 mm） コア・KO：150 mm（加圧150 mm）</td>
<td></td>
</tr>
<tr>
<td>加圧速度</td>
<td>max 250 mm/sec 〜 min 10 mm/sec</td>
<td></td>
</tr>
</tbody>
</table>

（3）加工速度は、通常の油圧プレスの10 mm/sec から、最大でメカニカルプレスの250 mm/sec までの広い範囲で可変であり、開発した工法をメカプレスへ置き換えるときの加工速度の影響も把握できるようになっている。

（4）シリンダのスライドモーションは、三角波、余弦波と各種設定でき、したがって、ユーザーのさまざまな鉄造条件の再現が可能となっている。

2. 自動車用歯車鉄造の開発状況と課題

2-1 クラッチギヤ、ベベルギヤの歯形鍛造

自動車用歯車の歯形鍛造は、はじめにスタータピニオンで実用化され、続いて、クラッチギヤやベベルギヤで本格化した。スタータピニオンでは、歯部および背面の異形状クラッ
チ部も同時に成形することにより、大幅なナジ語前後のコストメリットが達成できたものである。マニュアルマッショ用のクラッチギヤでは、切削加工の後加えて、シフティングが良いという商品価値の向上が着目された（80年代後半）ため、各自動車メーカーが採用するようになった。

続いて、クラッチギヤとスピードギヤ用ボスとの一体成型（写真2）が開発、採用され、これは、歯の効果に加えて、①切削部が一体成形できる、溶接工程を省略できる、②形状自由度が大きく、トランスミッションの小型化が可能である、という設計上のメリットが大きかったためである。これらの製造工程は、熱間鍛造＋冷間サイジングの複合鍛造法である。

デフギヤ等のペパルギヤの歯形鍛造は、同じく、熱間鍛造＋冷間サイジングの複合鍛造法で60年代末に開始されたが、80年代初頭の4 WD車の急増により、鍛造でしか成形できないフランジ付の特殊形状のデフギヤ（写真3）が採用されたために製造を廃止、急速に採用が拡大した。現在では、通常のデフギヤにおいても、鍛造成形が主流となっている。工法としても、生産性の高い冷間鍛造が広がりつつある。

このように、スタータビニオンや、クラッチギヤ、ペパルギヤの歯形鍛造の採用の歴史を見ると、①切削加工の大幅省略によるコストメリット、またはそれに加えて、②機能上あるいは設計上のメリットがあって、はじめて、急速に採用が進んできたことが理解できる。

2.2 ヘリカルギヤの歯形成形の
開発の現状と課題

ヘリカルギヤの歯形成形法として、熱間・冷間複合鍛造法、冷間押し出し鍛造法、流抜法による成形法、その他の製造法が存在するが、以下に見るように、対象車両の種類によって適用法を選定し、各社がこぞって開発に挑戦しているのが現状である。

（1）熱間・冷間複合鍛造例

熱間鍛造と冷間鍛造を組み合わせた複合鍛造法で、クラッチギヤやペパルギヤの歯形鍛造の採用を可能としたものであるが、その長所としては、①歯形荷重が小さい。②歯部以外の箇所の成形において形状自由度が大きいという点がある。克服すべき課題としては、①熱間鍛造工程に比較すると工程が長いため、②熱間鍛造型の歯部の熱負荷が大きいために、必要な精度と金型寿命を確保するのが難しいこと、の2点があると考えられる。

この工法については、熱間鍛造から出発したメーカーが、現在、盛んにトライアルを繰り返しており（例えば、写真4）、数千個の寿命を確認したとの情報もあるが、いずれにしろ、モジュールの大きめのヘリカルギヤその対象となると思われる。

（2）冷間押し出し成形法

自動車用プラネタリアビニオンの冷間押し出し成形法について、最近フォードが提案し、各社が最もトライアルしたが、材料の歩留まりが悪いこと他理由で採用には至らなかった。しかし、最近、写真5に示すようにヘリカルギヤ付きシャフト（ステアリングビニオン）において、ホプ加工品より高い精度で安定して生産できるようになり、大量に自動車用として採用されていることが報告されている。このゴイは、幾何学的を見込んだ精度
の良い金型を用いて、冷間にて押出し成形し、歯部の後加工を加えずに完成品にしている。

この結果を見ると、要求特性の極めて厳しい自動車のトランスミッション用歯車においても、近い将来に軸付きギヤでの採用が期待できるので、冷間押出し法は注目すべき工法の一つである。

（3）分割法による成形

分割法とは、例えば第2図に示すような歯車の成形方
案において、中央部に、待たずまたは逃がしぶを設けるこ
とにより、加工中に、内向きの流れと外側を形成しようと
する外向きの流れを生じさせ、歯部の成形最終段階にお
いても内向き流れの先端部に自由表面を確保することに
より、成形荷重の増大を防ごうとする方法である、発明者
である大貫。大貫は、非常に低い圧力で半歯車を成形し、
密閉鍛造と分割鍛造を組み合わせて2段階加工は、実用
的な複雑形状部品の加工に積極的に利用し得る技術であ
る」としている。

また、AIDA・NSF工法では、大貫、近藤らの分割・
2段鍛造加工を更に進めて、段付きマニュアルを用い、
それを引き上げ、当初は大部品を用いて圧延していたも

のを、順次、細小部に置換してゆくことにより、ヘリカル
ギヤをJIS3級レベルの精度で、冷間成形できると報告し
ている。

これらの報告を見ると、この分割法によってヘリカルギ
ヤを冷間にて一貫で成形できれば、前項で述べた熱間・冷
間複合鍛造法の課題、すなわち①工程を短縮し、②高い製
品精度と金型の長寿命を達成することが期待できそうであ
る。

3. 分割法によるヘリカルギヤの
成形実験

3-1 実験テーマの選定と実験の目的

ネットシェイプ成形の対象として、置換加工関係者の関
心が最も高く、様々なトライアルが実施され、研究収果の
報告や論議が盛んなのは、自動車用のヘリカルギヤである。
現状は、前項で述べてきたように、各社が、開発競争に追の
ぎを削っているが、技術上の課題の難しさを相割って、切
削加工の廃棄メタル以外の機能上あるいは設計上の大幅
なメリットが見つからない、苦労しているのが実状である。

当社としては、先に導入した銅造シミュレータを用い、
ユーザーとどう何を開発するか考えたとき、ユーザーの
関心度、将来性、ある程度のハードルの高さから前項の
「分割法によるヘリカルギヤの成形法」をテーマとして取り上
げ、その開発に取り組むことにした。

「分割法によるヘリカルギヤの成形法」が、まだ実用段
階には至らず、種々の未解決の課題があるので、実験の主
な目的として、以下の点を設定した。

（1）分割法によるヘリカルギヤの成形法の最適金型
方案を検討し、金型への負荷や寿命の推定、歯部精度、歯
部以外の箇所の成形性、等を推定すること。

（2）分割法の「捨て軸の原理」・「逃がしぶの原理」の一
皮を確認すること。

（3）分割法による歯成形法の実生産への適用の現実性
と採用に至るまでの課題を明らかにすること。

3-2 試作対象歯車

試作対象歯車の諸元を第2表に示す。これは、乗用車
のマニュアルミッション用のスピードギヤの諸元と同様のも
のである。

<table>
<thead>
<tr>
<th>第2表</th>
<th>歯車諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>Gear data</td>
</tr>
<tr>
<td>大径</td>
<td>65.6mm</td>
</tr>
<tr>
<td>小径</td>
<td>55.5mm</td>
</tr>
<tr>
<td>齒数</td>
<td>30</td>
</tr>
<tr>
<td>モジュール</td>
<td>1.75</td>
</tr>
<tr>
<td>压力角</td>
<td>17°30'</td>
</tr>
<tr>
<td>ネジ角</td>
<td>30°30'</td>
</tr>
</tbody>
</table>
3-3 実験方法
3-3-1 金型方案

(1) 金型の構成

採用した金型の方案とその写真を第3図および写真6に示す。この方案は、分流法の「捨て軸の原理」に基づいたもので、以下のように構造とした。

ダイスは下側からスプリングで支えられたフローティング式し、ダイスリーブには歯部を設け、ダイとツメ出ししながら、製品の歯部を直接加工成形する方式とした。この場合、ダイスリーブとダイおよびパンチは、相互に、容易に回転できる構造とした。

キャビテ内に設かれた材料は、加圧され、外向きに流れ出した材料は、ダイの歯部に流れ込んで歯先部を形成し、内向きに流れ出した材料は、上方に向け、捨て軸を形成する。

(2) 「捨て軸の原理」と「逃がし穴の原理」

第3図の金型方案は、分流法の「捨て軸の原理」を基本としたが、パンチを交換し、捨て軸を塞ぐことにより、分流法の「逃がし穴の原理」とによる成形も可能な構造とした。

(3) 内向き流動抵抗制御

パンチインサートを変更することにより、捨て軸部の外径を変更し、内向きの材料流れの流動抵抗を制御できる構造とした。

3-3-2 金型の破壊防止

金型の材質としては、ダイは超硬合金、ダイスリーブはセミハイブ系の材料を採用した。これらの工具の成形中の破壊対策として、次の3点を考慮した。

イ）ダイ間隙面の繰り返し啓込みの確認

ロ）製品出し時のダイ上端部の破壊対策

ハ）ダイスリーブ上端面歯部の荷重低減策

ロ）とハ）は、本件とは別の成形実験で金型破壊を伴う

経験から処置で、写真7の放射状の金型のワレの対策として、ニブ部上端面をその外側の二つのリング状上端部より下げるることにより、ニブ部上端面でも、繰り返し啓込みを

確認できるようにしたものである。

写真8の金型の破壊は、上端面の顔面側の歯のカド部

が、加工後の製品終わり出し時に、上からの押さえ方がために、過大な啓込み力を受けたために生じたと考えられる対策としては、顔面側の歯のカド部に面取りを施して、裏出し時の曲げ啓込みをはかなかったものである。

ハ）のダイスリーブの上端面（写真6参照）は、加工荷重を全面的に受ける構造になっており、ときにその歯部は、ダイと同様に、ねじれのために下側に空間ができ、加工中
3-3-3 供試材料

供試材料の材質としては、Si1C、Cr420HNの2種類を用いた。それぞれの成分分析結果を、第3表に示す。ここで、Cr420HNは、代表的な溶体強化鋼であるCr420HにNbを添加して、熱処理時の結晶粒子の粗大化を防止した鋼である。Si1Cは、変形抵抗が小さいので、材料の変形プロセスの確認用として用いた。

第3表 供試材料の成分と変形抵抗
Table 3 Chemical composition and flow stress of specimen

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si1C</td>
<td>0.07</td>
<td>0.01</td>
<td>0.34</td>
<td>0.018</td>
<td>0.02</td>
<td>0.04</td>
<td>-</td>
</tr>
<tr>
<td>Cr420HN</td>
<td>0.19</td>
<td>0.23</td>
<td>0.87</td>
<td>0.019</td>
<td>0.02</td>
<td>1.03</td>
<td>添加</td>
</tr>
</tbody>
</table>

3-3-4 材料の変形抵抗と鍛造温度

これらの材料の変形抵抗の測定結果を第4図および第5図に示す。変形抵抗の測定は、坂田らの断面拘束圧縮による方法に基づいて行った。

第4図、第5図から分かるように、300℃で加熱することにより材料の変形抵抗は、約15%低下するという結果が得られたため、金型保持の観点からの成形時の材料温度は300℃とし、金型は200～250℃に加熱した。また、材料は鍛造前に、球状化処理を行い、更に熱処理処理として、ポンピング＋二硫化モリブデン処理を行った。

3-4 実験結果と考察
3-4-1 捨て軸の原理による成形

（1）試作品外観

写真9に試作した試作品の外観写真を示す。

3-4-2 鍛造温度の影響

第5図に、鍛造の成形時の焼込温度と工具面圧の関係を示す。Cr420HN材で、捨て軸径をφ42としたとき、鍛造温度が100％となる工具面圧は、約1800MPaである。この面圧は、工具寿命が十分に長く、安定して成形できるレベルの低い值である。

（2）面圧と変形に必要な変形抵抗値

鍛造の成形に用いた材料Cr420HNの300℃における変形抵抗式は、第4図に示すように、下記のように近似した。

\[\sigma = 539 \cdot 6^{0.21} \]

ひずみ1における変形抵抗(539MPa)を、この材料の変形抵抗の代表値とすると、前項の工具面圧1800MPaから、この鍛造方法の面圧比(ハンチの平均面圧に対する材料の変形抵抗値)は、3.3となる。すなわち、「今回の鍛造方法は、変形抵抗の3.3倍の工具面圧でヘリカルギガ成形でき
第5図 摻込み率と工具面圧
Fig. 6 Effect of forging reduction and relief axis diameter on working pressure

第6図 摻込み率と工具面圧
Fig. 6 Effect of forging reduction and relief axis diameter on working pressure

第7図 「逃がし穴の原理」による成形成
Fig. 7 Forging process and tooling utilizing flow relief hole principle
第4表 鍛造後の歯車精度測定結果
Table 4 Gear accuracy after forging

<table>
<thead>
<tr>
<th></th>
<th>S10C</th>
<th>SCR420HN</th>
</tr>
</thead>
<tbody>
<tr>
<td>右歯形誤差</td>
<td>上</td>
<td>-0° 0°'3'' -0° 10''</td>
</tr>
<tr>
<td></td>
<td>中央</td>
<td>-0° 0°'2'' -0° 07''</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>+0° 0°'7'' +0° 05''</td>
</tr>
<tr>
<td>右歯筋誤差</td>
<td>上</td>
<td>+0° 0°'6'' +0° 04''</td>
</tr>
<tr>
<td></td>
<td>中央</td>
<td>-0° 0°'3'' -0° 02''</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>+0° 0°'1'' +0° 04''</td>
</tr>
<tr>
<td>右歯先</td>
<td>上</td>
<td>+0° 1°'1'' +0° 13''</td>
</tr>
<tr>
<td></td>
<td>中央</td>
<td>+0° 1°'3'' +0° 14''</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>+0° 1°'3'' +0° 09''</td>
</tr>
<tr>
<td>左歯形誤差</td>
<td>上</td>
<td>-0° 0°'1'' -0° 04''</td>
</tr>
<tr>
<td></td>
<td>中央</td>
<td>+0° 0°'0'' -0° 04''</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>+0° 0°'0'' -0° 02''</td>
</tr>
</tbody>
</table>

量を金型に織り込めば、更に良い精度で作ることができると考えられる。

(2) 齒筋誤差は、いずれもマイナスになっており、ネジレ角が小さくなる方向に変化している。

(3) 齒形誤差は、左歯面では、すべてプラス、すなわち圧力角が大くなる方向に変化しているが、右歯面では、下はプラスであるのに対して上と中央部でマイナス、すなわち圧力角が小さくなる方向に変化している。ただし、左右を平均すると上、中、下いずれも圧力角はプラスの方向に変化したことになる。

(4) 齒形、歯筋の誤差量を SCR420HN と S10C で比較すると、いずれも SCR420HN 鋼の方が大きくなっている。これは、変形抵抗の差から工具面圧が異なるために、成形中の金型の変形量がその分だけ大きくなったためと考えられる。

3-4-4 實生産採用のための課題とボス部の成形

(1) 實生産採用のための課題
分流法によるヘリカルギヤの成形方法の実生産採用を考えたとき、コスト面で影響の大きいファクターとして、①金型の寿命、②歯面精度（歯面のシュービング代）、③ボス部、歯部周囲面、内スプライン部等の歯面以外の切削代、ほかがある。

これまでの実験の結果から、①の金型の寿命については、分流法の「捨て輪の原理」を採用することにより、材料の変形抵抗の3.3倍の工具面圧で成形することが可能で、十分に実用的な寿命を持っていることが分かった。また、②の歯面精度も、絞り出し時の金型の破壊防止のために設けた歯部上端の面取り部を除去することを前提にすれば、鍛造時の変形をあらかじめ金型に反映させれば、充分に JIS 3 級レベルの精度の鍛造品が生産できることが確認される。

したがって、実生産採用のための課題は、③項の歯部以外の切削代をいかに少なくするかということになる。

(2) ボス部の成形
今回の試作対象としたヘリカルギヤは、本来、歯底径（小径）相当のボス部が設計されているものであるが、写真
4. まとめ

新たに導入した5シリンダ・油圧制御・鉄造シミュレータを用いた自動車のトランスミッション用ヘリカルギヤの試作を行った結果を要約すると、以下のようになる。

（1）分流法の「断面の厚さを短くすることにより、鰐先まで充分に材料の充満したヘリカルギヤを成形することが出来ない。」

（2）このときの工具面圧は、材料の変形抵抗の約3.3倍のレベルであり、変形抵抗が、670MPa以下の歯車用材料ならば、2200MPa以下の工具面圧となり、充分長い工具寿命が期待できる。

（3）バックラジ択を変更することにより、分流法の「逃がし穴の断面減小させたのを断面の厚さを短くすることにより、鰐先まで充分に材料の充満したヘリカルギヤを成形することが出来ない。」

（4）成形したヘリカルギヤは、開口率の切削防止のために施した面取りの形状を除けば、JIS 3 級の精度で、成形できる。

（5）分流法によるヘリカルギヤの寸法実用化を考慮したときの最大の課題は、内部面積面、ボス部、内スプライン面等の面積面以外の切削面の削減である。

（6）ボス部の切削面を削減する目的で、逃がし穴の断面減小させたのを断面の厚さを短くすることにより、鰐先まで充分に材料の充満したヘリカルギヤを成形することが出来ない。分流法に背圧制御を加えた成形法は、所望の形状を精度良く得るための現実的で有望な成形法と考えられる。

参考文献

1）長谷川平一，鉄造技術，40(1990.1) p.19～31
2) 藤川時一郎, 小村三郎, 特殊鋼58-12, (1989)p.9
3）溝口 真也, ウシド Grinding, 1983-81, No.5
4）石井 喜雄, 鉄造フォーラム, 第2回鉄造実用講座(1997)p.8
5）近藤 一義, 型性と加工24-271 (1983-81) 805
6）大貫 賢一, 佐藤 弘行, 近藤 一義, 型性と加工36-412 (1995-5) 504
7）小林 伸一: プレス技術32-11, (1994)49
9）小坂田宏造・花見真司・王英: 最新分析化学63回研究集会 (1997)p. 18
10）小坂田宏造・花見真司・王英: 鉄造フォーラム第63回研究集会 (1997)p. 22
11）近藤 一義・大貫 賢一: 型性と加工, 27-300(1985), 125