耐熱ポリエチレン被覆鋼管の寿命予測

Service Life Prediction of Polyethylene Coated Steel Pipe for Elevated Temperature

岸川浩史／Hirofumi Kishikawa・総合技術研究所 鋼管・鋼材研究部 主任研究員
上村隆之／Takayuki Kamimura・総合技術研究所 鋼管・鋼材研究部
大北雅一／Masakazu Ohkita・未来技術研究所 エレクトロニクス基盤研究部 主任研究員
曽我好孝／Yoshitaka Soga・和歌山製鉄所 液接管生産技術室
岡本浩一／Kouichi Okamoto・和歌山製鉄所 中極溶接管工場 副場

要 約

耐熱ポリエチレン被覆鋼管の高温での耐久性について、高周波の変形抵抗性及び耐熱酸化性について検討した。耐熱酸化性による、酸化防止剤の添加により改善され、フェノール系酸化防止剤を3700ppm添加したポリエチレン鋼管による耐熱被覆鋼管を開発した。

開発被覆鋼管は、80℃、9.8N/mm²の押圧下でも40年後の浸入深さは、初期浸漬の1/4以下と予測され、性能上問題にならないと考えられる。

また、耐熱酸化性については乾燥条件を模倣したオープンエージング試験及び湿潤条件を模倣したオートクレープ試験で評価したが、何れの条件でも40年以上の寿命が予測された。本被覆鋼管は既に地域冷暖房配管等に適用されており、優れた高温耐久性を発揮している。

Synopsis

The indentation and thermal oxidation resistances of polyethylene coated steel pipe at elevated temperatures were investigated. A polyethylene coating with 3700ppm phenolic antioxidant which improved thermal oxidation resistance was developed. It is predicted that this coating is indented by only less than a quarter of the initial coating thickness under 9.8 N/mm² compression stress at 80℃ after 40 years. This indentation is no problem for practical use.

The service life of this polyethylene coating at 80℃ is predicted to be over 40 years under both dry and wet conditions from the results of oven aging and autoclave tests. The polyethylene coated steel pipe has been applied in local air conditioning and showed excellent durability at elevated temperatures.

1. 緒 言

近年、埋設鋼管の耐耐食性として、従来の塩化スチレン（アスファルト、コールタールエンボ trouvé）に代わり、ポリエチレン（Polyethylene；以下PEと略す）樹脂被覆あるいはエポキシ樹脂粉末（Fusion Bonded Epoxy；以下FBEと略す）被覆が、多用されている1,2). しかし、最近パイプライン操業では、流速効率向上を目的とした高圧送水に起因する内流物の高温化傾向が見られ、また地域冷暖房配管における蒸気・高温水配管の増加により、耐酸食被覆にも耐高温性が要求されるようになってきた。

上記2種類の被覆の内、FBE被覆は耐熱酸化性樹脂のため、高温での軟化が極めて少なく、耐熱状態は優れているものの、耐衝撃性に劣るため輸送・配管施工時に被破損傷を受けやすいとともに、高温高圧下での吸水が大きいとの問題がある3)。

一方、PE樹脂は、その分子内に極性基を含有しないため、耐食性に非常に優れているが、熱可塑性樹脂のため高温での軟化が問題であり、また、熱と酸素による長期的な熱酸化劣化問題となる。

そこで、酸化防止剤（Antioxidant；以下AOと略す）添加による耐熱劣化性の向上を目的に検討した。また、酸化防止剤を添加した耐熱PE被覆について、溶融強度、熱酸化劣化の面から寿命予測を行った。

2. 耐熱PE被覆の開発

第1回にPE被覆鋼管が、蒸気配管に使用される場合の
模式図を示す。PE被覆鋼管は、断熱二重管の外管として使用されるが、内面の流体が200℃の蒸気の場合、表面被覆の温度は最高80℃程度まで達する。

このような温度で問題となるのは、PE樹脂の軟化と酸化である。PEは、その製造により種々の密度の樹脂が製造され、一部には0.915～0.956g/cm³の樹脂が使用されている。樹脂密度が変わる理由は、ポリエチレン鎖に残留する不純物の数や長さにより、结晶化度が変化するためであるが、同時に物性にも大きな影響を与える。

第1図 蒸気配管概念図
Fig.1 Schematic diagram of steam composite pipe

一般に、PE樹脂は、密度が高くなるほど、常温ならびに高温での強度が向上する。一方、耐環境応力亀裂（ESCR）性は、低下する傾向を示す。これらの点を勘案して、被覆樹脂は、密度0.938g/cm³の中密度PEを選定した。この中密度PEの性状を第1表に示す。

このPE樹脂の耐熱酸化性向上を目的としてAOの添加を検討した。耐熱酸化性的評価には、樹脂中の有効残留Aと相関のある酸化誘導時間（Oxidative Induction Time；以下OITと略す）を示差走査熱量計（DSC）で測定した。OIT測定は、試験片の表面から1mm深さを切り出し、N₂flow（50cm³/min）で20℃/minで昇温し、所定温度に到達後、その温度で保持し、N₂flowからO₂flow（50cm³/min）に置換したときからPEの酸化反応に基づく発熱開始までの時間をOITとした。

また、AOは、ヒンダードフェノール系AOならびにスルフィド系AOを使用し、それぞれを添加したPE樹脂のOITを各温度で測定し、その耐熱酸化性向上効果を検討した。

結果を第2図に示す。絶対湿度の逆数とOITの対数プロット（Arrhenius plot）は、直線性を示し、酸化防止剤の消費反応が、Arrhenius型の反応で進行していることが明らかである。Arrhenius型の反応であることは、ヒンダードフェノール系AOの添加量を増加させても、Arrhenius plotの直線の傾斜（反応の活性化エネルギー）を保持していることからも明らかである。

また、スルフィド系AOは、高温での酸化防止性能は良好であるが、Arrhenius plotの直線外挿から予測される80℃での寿命は、ヒンダードフェノール系AOに対し劣る結果となる。これは、AOの消費反応における活性化エネルギーの差に起因するものと考えられる。

80℃での耐熱酸化寿命の目標を40年とおくと、これら3種類のAO添加PEはいずれも目標をクリアするが、寿命予測の誤差を考慮し、耐久性に優れた製品を提供するという観点から、ヒンダードフェノール系AO3700ppm添加PEを開発した。

第1表 ポリエチレンの基本物性
Table 1 Properties of polyethylene

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit</th>
<th>Typical test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>0.94</td>
</tr>
<tr>
<td>Melt index</td>
<td>g/10min</td>
<td>0.21</td>
</tr>
<tr>
<td>Vicat softening point</td>
<td>°C</td>
<td>≥115</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>N/cm²</td>
<td>≥2,500</td>
</tr>
<tr>
<td>Elongation</td>
<td>%</td>
<td>>500</td>
</tr>
<tr>
<td>Hardness(Shore D)</td>
<td></td>
<td>≥55</td>
</tr>
<tr>
<td>Water absorption</td>
<td>%</td>
<td>0.02</td>
</tr>
</tbody>
</table>

第2図 酸化防止剤による寿命延長
Fig.2 Improvement in durability with antioxidant

3. 耐熱PE被覆の機械的特性

一般にPE被覆鋼管は埋設して使用される。この場合、問題となるのは、埋設後に生じる砂利類による衝撃と、埋設使用中に生じる砂礫のクリープの食い込みである。

耐衝撃性については、衝撃が発生する時点は、使用前のため常温であり、PE被覆は常温での耐衝撃強度を十分有
するため検討項目から除外した。
一方、砂礫の食込みについては、80℃という高温を使用時の樹脂軟化によるクリープ変形が問題となる。そこで、高温強度については、DIN 30670に規定されたIndentation試験（面積2.5mm²の針を圧力9.8N/mm²で24時間押圧）に準拠し、80℃での圧縮変形深さの経時変化を検討した。なお試験は、吸水による軟化を考慮するため、3％食塩水中で行った。

結果を第3図に示し、押し込み変形深さは、100時間を超えるとLog-Log plotに対し直線的に変化するのがなる。一般に樹脂は粘弾性体であり、弾性と粘性の双方を有するが、弾性変形は短時間で起こるため、100時間以上という長時間後は主に粘性による変形するものと考えられる。この粘性による変形は、一般にクリープ変形と呼ばれるが、高分子樹脂においては、次に示すNutting式に従うことが知られている。

\[\varepsilon(t) = K \alpha t^n \]

ここで \(\varepsilon(t) \)：時間 \(t \)における歪み、
\(K, n \)：温度に依存する定数、\(\alpha \)：負荷応力
この式の両辺の対数をとると
\[\log \varepsilon(t) = n \log(t) + \log K \alpha \]

すなわち時間を変化した歪み変化をLog-Log plotするとき直線となることが判る。そこで80℃環境での40年後の変

入深さを直線外挙により予測してみた。結果は40年後において0.596mmであり、この値はPE被覆の初期厚2.5
mmの1/4以下であり、性能に大きな影響は与えないものと考えられる。

4. PE被覆の耐熱寿命予測

4-1 耐熱劣化試験

2章においては、OITのArrhenius plotを直線外挙することにより40年以上の耐熱寿命を期待できることを述べた。ところが、OITによる直線外挙では、200℃近辺の非常に高温での測定値から直線外挙するため誤差が大きく、またこのような高温でのOIT測定値に基づく予測は、より低温でのオープンエージング試験との実測値に合致しないとの指摘もある。

また、埋設環境においても第1図に示したようにその環境は必ずしもオープンエージング試験のような乾燥環境とは限らず、地下水による湿潤環境も想定される。

そこで、乾燥環境のシミュレーション試験としてオープンエージング試験を、また湿潤環境のシミュレーション試験としてオートクレーブ試験により耐熱劣化試験を行った。

耐熱劣化試験は、円盤状のPEシートを供試材として所定時間を行い、引張り試験片についてはシートからダンベル状試験片を切り出し、またOIT測定試験片はシートの表面から1mm深さになるよう切り出し、評価した。耐熱劣化試験条件を第2表にまとめる。また耐熱劣化試験後のPE樹脂の評価試験法を第3表に示す。

Table 3 Evaluation test method of PE resin after heat deterioration test

<table>
<thead>
<tr>
<th>Test</th>
<th>Condition</th>
<th>Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile</td>
<td>JIS K 6760</td>
<td>JIS K 6760</td>
</tr>
<tr>
<td>OIT</td>
<td>DSC method</td>
<td>Cutting sample</td>
</tr>
<tr>
<td></td>
<td>Temperature 200℃</td>
<td>surface layer 1mm</td>
</tr>
<tr>
<td></td>
<td>N₂, O₂ flow 50cm³/min</td>
<td>about 10mg</td>
</tr>
</tbody>
</table>

Table 2 Heat deterioration test conditions

<table>
<thead>
<tr>
<th>Test</th>
<th>Temperature (℃)</th>
<th>Test period (month)</th>
<th>Atmosphere</th>
<th>Specimen shape and size</th>
<th>Evaluation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oven aging test</td>
<td>80</td>
<td>0.25</td>
<td>Air</td>
<td>Disk shape 100mm width thickness 2.5mm</td>
<td>Yield strength OIT</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>1.2, 3, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>6, 12, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoclave test</td>
<td>80</td>
<td>0.25</td>
<td>Deionized water</td>
<td>Disk shape 100mm thickness 2.5mm</td>
<td>Yield strength OIT</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>1.2, 3, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>6, 12, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4-2 耐熱劣化試験結果

第4〜7図に引張試験の結果を示す。PE樹脂の降伏応力は、乾燥、湿潤条件下問わず、経時的に増えるが、その変化は比較的小さい。一方、破断伸びは、経時的に減少するが、その減少は直線的変化ではなく、ある時期間経過後、急激に減少を示す傾向を示す。また伸びの低下は、高温になるほど早く、また乾燥条件の方が湿潤条件よりも早く低下する。これにより、耐劣化が、熱劣化劣化として起こるため、酸素濃度の高い乾燥条件が短時間で劣化するものと考えられる。

![図4 PE降伏応力の経時変化（乾燥条件）](image)

![図5 PE降伏応力の経時変化（湿潤条件）](image)

また、OITの経時変化を第8〜9図に示す。OITは経時的に減少し、かつ試験温度が高いほど、その減少速度が大きいことがわかる。図において、OITの下限値と劣化開始点としたことについては、次節で述べる。

![図6 PE破断伸びの経時変化（乾燥条件）](image)

![図7 PE破断伸びの経時変化（湿潤条件）](image)

![図8 OITの経時変化（乾燥条件）](image)

(5 minutes OIT means starting point of deterioration)
4-3 耐熱寿命予測
寿命予測を行う場合、その寿命を何で評価するかが重要であるが、寿命に対する明確な定義は無く、要求特性を喪失した時点を一般に寿命と呼んでいる。防食被覆鋼管においては、防食被膜の防食性能が喪失した時が、寿命と考えられるが、その評価は非常に難しい。高分子樹脂の耐熱寿命としては、伸び半減期で評価されることが一般的であり、本報では、それに従い伸び保持率50%（伸び率40%）以上を健全状態であるとみなし、一方、前述のように伸びの低下は直線的には起こらないため、その半減点を特定するのは困難である。

そこで、健全状態（○）、劣化状態（●）でArrhenius plotを行ったのが第10図である。一般に、高分子樹脂の寿命（特性が変化し、ある閾値以下になる時間）に対してArrhenius型の式で表すことができ、絶対温度の逆数に対し、寿命の対数をプロットした場合、プロットは直線性を示すことが知られている。

このとき、寿命予測の直線は、常に○以上及び●以下を通らなければならないため、その条件を満たす最高の傾きと最低の傾きが、寿命予測範囲を示すことになる。乾燥条件では、80℃での寿命として96〜181年の寿命が予測された。一方、湿潤条件では2.5〜85年と上々で40倍近くの差という大きな差を与える結果になった。引張試験の間隔を詰め、伸び半減時間を特定していれば、その精度は向上するが、サンプル数の増大は過大の労力を必要とする。

そこで、OITの変化を着目した。OIT変化は、第10〜11図に示すように比較的直線的に変化する。理論的には、OITが0になった時点が寿命と考えられるが、OITと相関を有する残存AOは、PE樹脂表面と内部で濃度変化を有しているため、劣化状態でも、OITが0でないある値を示す可能性がある。

第11図 PE伸びによる寿命予測（湿潤条件）
Fig.11 Service life prediction of PE coating with Arrhenius plot on PE elongation
Sound: Elongation > 430%
Deterioration: Elongation < 430%

第12図は、OITと伸びの相関を検討した結果であるが、OITが5分以下になると伸びが著しく減少することが判明した。そこで、OITが5分になる時点で寿命とみなした。OITは、比較的、直線的に変化するが、80℃での測定値で検定するには、誤差の点で不安が残る。OIT測定値が、5分以下あるいは5分に近いている20℃以上での試験データについては外挿によりOIT 5分になる試験時間を第8図及び第9図から求めた。

その値を基に絶対温度の逆数と寿命の対数をプロット（Arrhenius plot）した結果を第13〜14図に示す。乾燥状態で12年、湿潤状態で47年の寿命が予測される。ここで、高温で劣化の速い湿潤状態が、乾燥状態よりも予測寿命が短くなるのは劣化メカニズムの相違によるものと考えられる。

第12図 OITとPE破断伸びの相関
Fig.12 Relationship between OIT and elongation
すなわち，乾燥状態ではPEの熟硬化により生成したラジカルがAOを消費していくため，湿潤状態では酸素が少なく，水分によるAOの溶出ないしは失効が支配的になるためと考えられる。但し，常圧100℃以上においては，本来水分が存在せず，オートクレープ試験においては加湿状態でPE中に短時間無水分を浸入させる試験となるため，温度効果以外の加速因子が働き予測精度が大幅時間分シフトした可能性も考えられる。
何れにしても，乾燥，湿潤の条件を問わず，80℃での耐熱寿命として40年以上が期待できる。

5. 結言

著者らが開発した耐熱PE被覆鋼管について，その機械的特性，耐熱劣化性について，寿命予測の観点から論じた。
機械的特性は，高温における樹脂特性化状態での破壊の食い込みの問題が顕著であるが，本開発品は，80℃で9.8N/mm²の押圧下40年後においても，その侵入深さは初期厚の1/4以下の予測され，使用上問題にならないと考察される。
また，耐熱劣化性については，乾燥条件ならびに湿潤条件下で検討し，乾燥状態で12年，湿潤状態で47年と予測され，何れの場合も40年以上という長期寿命が期待される。本被覆鋼管は耐熱耐久性の変化を発揮している。