サーボプレス機を活用したNSSC 2120®の角筒成形性向上

Improvement of the Square Shell Drawability of NSSC 2120[®] Sheet by Using a Servo Press Machine

櫻庭拓也*石丸詠一朗川 真知 Takuya SAKURABA Eiichiro ISHIMARU Masatomo KAWA

抄 録

日鉄ステンレス(株)独自鋼種である NSSC 2120 は高強度特性を活かし薄板用途において SUS304 代替による市場拡大を目指している。SUS304 は種々の用途に使用されているため、同形状への成形を可能にすることが必須である。そこで、プレスモーションを自由に設定可能なサーボプレス機を利用し、角筒成形性を向上させる方法を検討した。その結果、プレスモーションをステップモーションへ変更することで、材料流入の制御を可能とし、ウォールブレイクを回避できる。以上の効果により、SUS304 と同等の角筒成形性が得られることを確認した。

Abstract

We aim to expand NSSC 2120 market share by replacing SUS304 in sheet applications. SUS304 has diverse uses, so the formability of NSSC 2120 into sheets is a requirement. We explored methods of enhancing it's the square shell drawability, using a servo press machine whose press motion can be freely configured. Adopting a step motion avoids crack formation by controlling material inflow. In this way, the square shell drawability similar to that of SUS304 was achieved in NSSC 2120.

1. 緒 言

リーン型二相ステンレス鋼はオーステナイト系ステンレ ス鋼と比較し,価格変動の大きいNiやMoなどのレアメタ ルの添加量を抑えることで省資源かつ価格安定性の高い鋼 種である。日鉄ステンレス(株)では独自リーン型二相ステ ンレス鋼として SUS304, SUS316 代替を可能とする NSSC 2120 と NSSC® 2351 を開発した。これらの鋼種の特徴のひ とつに既存のオーステナイト系ステンレス鋼と比較し高強 度であることが挙げられる。この特性による薄肉軽量化を ユーザー享受可能なメリットとして発信しており,今後適 用範囲の拡大が見込まれる。一方で,薄板用途ではプレス 技術の発展とともに要求される加工形状が複雑化してい る。高延性で様々な加工形状へ成形可能な SUS304 から NSSC 2120 への代替は,難しいことが想定される。

そこで、二相ステンレス鋼の成形性を向上させることを 目的にサーボプレス機を活用した成形方法の開発に取り組 んでいる。サーボプレス機はクランクの駆動力にサーボモー ターを利用していることから、プレスモーションを自由に 設定できるため、Punch 速度の加減速や途中止め等が容易 に可能である。このモーションの選択による成形性向上の 効果は、高張力鋼材等の曲げ加工時に発生するスプリング バックの改善^{1,2},深絞りの成形性向上にサーボプレスの機 能を活用したモーション制御³⁾やパルスモーションを活用 した研究⁴⁾が報告されている。本報ではこれらを参考に、 SUS304 と同等の NSSC 2120 の角筒成形性向上を検討した 結果を報告する。

2. NSSC 2120の成形性

2.1 NSSC 2120 の組成, ミクロ組織及び引張特性

本調査に用いたサンプルは,商用製造された NSSC 2120 (以下,N2120 と示す),板厚 1.0mmの2B 製品である。表 1 に代表的な組成を SUS304 と比較して示す。N2120 はレ アメタルである Ni, Moを低減し,オーステナイト相安定 化のため N を多く含有している。サンプルのL 断面ミクロ 組織を図1に示す。図1中の灰色部がフェライト相(α相), 白色部がオーステナイト相(y相)となる。N2120のミクロ 組織はα相とy相がそれぞれ 50%程度の二相混合組織を 有する組織形態となる。表2に N2120 と SUS304の引張特 性を示す。引張試験条件は,JIS Z 2241 条件に準拠し,圧

^{*} 日鉄ステンレス(株) 研究センター 加工技術研究室 研究員 山口県光市島田 3434 〒 743-8550

(mass%)

延方向に平行な方向より採取した JIS13 号 B 試験片により 測定した。得られた引張特性を比較すると、N2120 は SUS 304と比較し0.2%耐力や引張強さが高く、高強度であるが、 低延性となる。図2に真応力 - 真ひずみ曲線を示す。SUS 304 は変形に伴う加工誘起マルテンサイト相の生成により 加工硬化が継続し、誘起変態塑性(TRIP)により優れた均 一伸びを示す。それに対しN2120 は加工硬化性が小さく、 フェライト系ステンレス鋼板とほぼ同等のn値を示してお り、構成相であるy相のTRIP 効果は生じていない。

2.2 N2120の成形性

成形性評価試験として、エリクセン値と限界絞り比 (LDR)の評価を実施した。エリクセン試験は JIS Z 2247 B 法に準拠し、しわ押さえ力 10kN, Punch 速度 20mm/min で実施した。LDR 測定では金型を Punch 径 40mm, Die 径 42mm とし、ブランク径 80~90mm まで 2mm 間隔で変化 させることで絞り比を変化させた。しわ押さえ力 10kN,

表 1 各鋼種の代表成分 Chemical composition

							(
Material	С	Si	Mn	Cr	Ni	Мо	Cu	Ν
NSSC 2120	0.02	0.5	3.2	21.4	2.1	0.6	1.1	0.18
SUS304	0.06	0.4	0.8	18.3	8.6	0.2	0.3	0.04

図1 NSSC 2120のL断面ミクロ組織 (α相:灰色,γ相:白色) Microstructure of NSSC 2120 (α phase: gray, γ phase: white)

表 2 各鋼種の引張特性 Mechanical properties of material

Material	thick- ness	0.2%PS	TS	EL	n-value	r-value
	(mm)	(MPa)	(MPa)	(%)		average
NSSC 2120	1.0	601	793	29.9	0.19	0.76
SUS304	1.0	324	694	51.7	0.43	0.98

図2 真応力 - 真ひずみ曲線 True stress - true strain curve Punch 速度 20mm/min で絞り抜けるまで Punch を移動させ た。LDR は、絞り抜け可能な最大のブランク径を Punch 径 で除した値とした。測定結果を表3に示す。低延性となる N2120 は SUS304 と比較し、エリクセン値は低くなる。深 絞り性を示す LDR は SUS304 と同等の値となる。

3. サーボプレス機を活用した成形方法の開発

3.1 試験方法

プレス成形性評価には角筒形状を選択した。角筒成形性 は絞り成形と張り出し成形が混在した成形であり、材料の 加工特性を見極める有効な手段と考えたためである。プレ ス試験機にはモーションを自由に設定できるサーボプレス 機(アイダエンジニアリング製 DFS-N1-1500)を用いた。表 4 に本試験で用いた金型寸法及びブランク形状を示す。供 試材は N2120, SUS304 の板厚 1.0mm 材を用い、ブランク サイズは 170mm の正方形でコーナーカット 30mm である。 潤滑はジョンソンワックス #122 を薄く塗布した。なお、成 形品のひずみ量測定に画像解析を用いたため、表面のマー カー保護を目的に供試材にはポリ塩化ビニル (PVC) シート を両面貼り付けている。

表5に成形条件を,図3にサーボモーションをそれぞれ 示す。サーボモーションは2種類設定し,成形高さ50mm の角筒成形性評価を実施した。spmは1分間にPunchが往 復する回数を,ステップモーションはプレス成形中に設定 した高さでモーションを一時停止させ,設定時間後のプレ スを再開させるモーションを示している。ステップ条件は, 下死点位置より20mm位置で1.0秒の停止時間と設定した。

表3 加工特性值 Forming properties

Material	Er-value (mm)	LDR
NSSC 2120	10.3	2.05
SUS304	12.4	2.05

表 4 金型寸法及びブランク形状 Mold dimensions and blank shape

	< N		4
(21	Mold	dimensions
1	u)	1 IVIOIU	unnensions

	① Size	2 Shoulder radius	③Corner radius
Punch	$70 \times 70 \text{mm}$	8 mm	10 mm
Die	$72 \times 72 \mathrm{mm}$	6 mm	11 mm

(b) Blank shape and lubrication condition

	④ Size	⑤ Corner cut	Lubrication condition
Blank	$170 \times 170 mm$	30 mm	PVC sheet+Johnson wax

(c) Mold

プレス成形実施後の評価方法は外観観察による成形割れ 有無の判定, Punch 荷重の推移,形状比較,板厚分布,ひ ずみ解析を行った。三次元形状測定はスキャナー型三次元 形状測定器(キーエンス製 VL-300)を用いて 3D モデルを 取得し,形状比較を行った。板厚は超音波板厚測定器(オ リンパス製 MG45)で測定を行った。ひずみ分布の測定は 画像相関法(GOM 製 ARGUS)を用い算出した。

3.1.1 クランクモーションでの角筒成形性

表6にクランクモーションでの各鋼種のプレス成形結果 を、図4にプレス成形したサンプル外観を示す。N2120は 成形高さ30mmで割れが発生したが、SUS304は50mm高 さまで成形可能であった。N2120の割れは、図4中央の拡 大写真に示されるようにDieR部より10mm高さ位置より 直辺部とコーナー部のフランジ部境界に向かって進展して

表5	サーボ	モーショ	ョン設定値
Par	ameter o	of serve	o motion

	Comio	Spm Real spm		Step		BHF
Material	motion	number/ min	number/ min	Step position (mm)	Step time (s)	(kN)
NSSC	Crank	5	5	-	_	150
2120	Step	5	3	20	1.0	150
SUS304	Crank	5	5	_	_	150

表6	プレス試験結果
Resu	Its of press test

Material	Servo motion		Results	Cracking position	
NSSC 2120	Crank		No good	Bottom of corner	
SUS304	Crank		Good	No crack	
(a) NSSC 2120 , Crank		(b)	Cracking on (a)	(c) SUS304 , Crank	

図 4 クランクモーションによるプレスサンプル外観 Press sample of crank motion

いる。この N2120 の割れ形態はウォールブレイクと一致している。

3.1.2 ステップモーションでの角筒成形性

表7にステップモーションによるプレス成形結果を、図 5に成形したサンプル外観を示す。ステップモーションの 適用により割れなく50mmの成形が可能となり、SUS304 と同等の成形高さが得られることが確認できた。

3.2 サーボモーションによる成形性への効果

3.2.1 Punch 荷重推移

図6にクランクモーションとステップモーションを用い てプレス試験した際のPunch荷重変化を示す。クランクモー ションとステップモーションの最大荷重はおおよそ一致し ている。モーションによる荷重変化として次の2点が確認 された。1つ目はモーション停止中の荷重低下である。2つ 目はモーション再開直後に荷重値が増加し、クランクモー ションの荷重よりも高くなる点である。これらの現象は応 力緩和効果として同様の報告がなされている⁵。

3.2.2 3D 形状比較結果

三次元形状測定はスキャナー型三次元形状測定器を用い てプレスサンプルの外観を全周撮影し,得られた位置情報

表7 プレス試験結果 Results of press test

Material	Servo motion	Results	Cracking position
NSSC 2120	Crank	No good	Corner of bottom
NSSC 2120	Step	Good	No crack

図 5 ステップモーションによるプレスサンプル外観 Press sample of step motion

History of punch force

より 3D モデルを作成した。基準面を Punch 側の平面とし て位置合わせし,高さ差分を視覚化することで形状比較評 価を行った。

図7にクランクモーションとステップモーションの3D 形状比較結果及び断面形状比較を示す。ステップモーショ ンの形状を基準とし、赤色部は成形品外側への変形(凸部)、 青色部は成形品内側への変形(凹部)を示す。直辺部、コー ナー部ともに側壁上部では凸形状となり、側壁下部では凹 形状となっていることが確認できる。コーナー部と直辺部 を比較すると直辺部の変化が大きくなっている。コーナー 部の断面形状を形状差分として図7(b)で確認すると、コー ナー部の形状変化は上部が凸形状で下部が凹形状のS字 状になっており、クランクモーションのほうがステップモー ションより材料流入が多く、側壁部で材料が余っている。

3.2.3 板厚測定結果

板厚測定は超音波板厚測定器を用いて非破壊測定を実施した。Punch R 部を原点とし,測定ピッチ 5mm でコーナー部と直辺部の2箇所を測定した。

板厚測定結果を図8に示す。コーナー部の板厚は, Punch

Distribution of thinning

R 部近傍ではステップモーションのほうがクランクモー ションよりも板厚減少が大きくなっている。対して直辺フ ランジ部の板厚は、クランクモーションのほうがステップ モーションよりも厚い。モーションの違いによる板厚差が 顕著であった部位は、コーナー Punch R 部と直辺フランジ 部である。前項で確認された形状の差と板厚分布は、同様 の傾向を示していると考えられる。例えば、コーナー部で S 字形状を示したクランクモーション材では、材料流入が 促進されたため張り出し変形が軽減され板厚減少が抑制さ れている。

3.2.4 ひずみ分布測定結果

ひずみ分布の測定は画像相関法を用い算出した。成形前 のサンプル表面にφ1mmのドット模様を1mm間隔で配列 し、プレス成形を実施した。プレスサンプルのドット模様 の位置を画像解析し、プレス前後の位置変化量を計測する ことでひずみ量に換算した。

図9にコーナー部のひずみ解析結果を比較して示す。ひ ずみはモーションに依らずコーナー部にのみ発生している。 モーションによる差はひずみ量に明確な差として認められ、 クランクモーションではひずみ量が多く集中した領域が確 認できる。ひずみが集中した領域は逆 V 型の形態を示して いる。図10にコーナー中央部のひずみ量を比較して示す。 Punch R 部においてステップモーションのひずみ量がクラ ンクモーションよりも多いことが明確であり、板厚測定結

図 9 ミーゼスひずみ分布図 Mises strain distribution map

図 10 コーナー部のミーゼスひずみ History of Mises strain on corner 果と一致している。最もひずみ量が多い箇所はコーナー側 壁部の Punch R 部から 20mm 付近であり、ステップモー ションのひずみ量と比較するとその差は明らかである。こ のひずみ分布からも、クランクモーションにおける N2120 の割れはウォールブレイクであるといえる。

4. サーボモーション適用による角筒成形性向上

サーボモーションの適正化により薄板の成形性が向上す る研究報告[®]があり、再潤滑や応力緩和によるひずみ分散 の効果が挙げられている。本角筒成形試験のクランクモー ションで発生した割れは、前述したようにその特徴から ウォールブレイクと推定される。ウォールブレイクは、直 辺部とコーナー部の材料流入量に顕著な差が発生し、その 流入量の差が最も大きくなる箇所でせん断ひずみによる割 れが生じると考えられている⁷。図9のひずみ量測定結果 からも明らかなように、ひずみが集中した領域は逆 V 字と なっており、ウォールブレイクに観察される割れ形状に類 似している。ウォールブレイクが発生した原因としては、 ブランク材のコーナーカットによりコーナー部の材料流入 が促進された点、直辺部中央の材料流入が顕著でフランジ で流入速度の差が大きくなった点が挙げられる。

対して、割れが発生しなかったステップモーションは、 クランクモーション材と同様に逆 V 字形状にひずみが発生 しているものの集中領域は発生していない。ステップモー ションによってひずみ分布が変化した要因としては、停止 時に材料に生じるスプリングバックの効果と考えられる。 図11にステップモーション前後のPunch 荷重変化を拡大 して示す。Punch 荷重は停止に伴い低下しモーション再開 直後に顕著な荷重の増加が確認され、その後クランクモー ションと同様の荷重となっている。この荷重低下は、材料 がスプリングバックにより変形することで生じたと考えら れる。この変形により高ひずみ箇所が移動し、ひずみの分 散につながっている。また、モーション再開時の荷重増加 は、材料のスプリングバックにより新たな箇所で加工硬化 が生じたためと考えられる。また、ステップモーション材の ほうがクランクモーション材よりも成形形状が良好であり リストライクの効果も発生している。

以上の結果から,ステップモーションにより成形性が向 上した要因として,

1) モーション停止時のスプリングバックにより,

①直辺部は顕著な材料の流れ込みが起こる

②コーナー部は張力を緩和するため材料が流入するが拘束 により移動量は僅かとなる

2) モーション再開時は,

③直辺部は過剰な流入による肉余りを解消するため変形が

図 11 ステップモーション前後の Punch 荷重 Punch force before and after step motion

促進する

④コーナー部はひずみ集中箇所が僅かに移動し、変形を再 開する

⑤直辺部とコーナー部の材料流入量の差が小さくなり, ウォールブレイクを回避した

と推定される。

5. 結 言

サーボプレスを活用した NSSC 2120 の角筒成形性を向 上させる成形方法の開発に取り組み,以下の知見が得られ た。

- NSSC 2120 は、0.2%耐力が600MPa、破断伸びは30% であり、SUS304 に比べ高強度低延性の引張特性を示し ている。
- (2) 加工特性としては, r 値が 0.78 と低いものの限界絞り 比 LDR は 2.05 と SUS304 と同等の値を示している。
- (3) SUS304 と同じ成形条件としたクランクモーションの角 筒成形試験において, NSSC 2120 では, ウォールブレ イクが発生した。
- (4) ステップモーションで成形することで NSSC 2120 の角 筒成形性は向上し, SUS304 と同等の成形高さを得るこ とが可能になる。
- (5) ステップモーションによる成形性の向上は,モーション 停止時のスプリングバック起因の変形により材料流入 速度が緩和されたためと考えられる。

参照文献

- 1) 久野拓律 ほか:型技術. 27 (10), 28 (2012)
- 2) 澄川智史 ほか: 塑性と加工. 61 (710), 1 (2020)
- 3) 玉井良清 ほか: 塑性と加工. 50 (587), 15 (2009)
- 4) 西村尚 ほか: 塑性と加工. 50 (586), 14 (2009)
- 5) 久野拓律 ほか:平成 24 年塑性加工春季講演会講演論文集. 2012, p.117
- 6) 山下裕之 ほか: Honda R&D Technical Review. 24 (1), 142 (2012)
- 7) 岡本豊彦 ほか: 塑性と加工. 7 (70), 584 (1966)

- 38 -

櫻庭拓也 Takuya SAKURABA
 日鉄ステンレス(株)
 研究センター 加工技術研究室
 研究員
 山口県光市島田3434 〒743-8550

石丸詠一朗 Eiichiro ISHIMARU 日鉄ステンレス(株) 研究センター 加工技術研究室 室長(部長) 工博

川 真知 Masatomo KAWA
 日鉄ステンレス(株)
 研究センター 厚板・棒線材料研究部
 主幹研究員