電池ケース用高加工性Niめっき鋼板の諸特性

Properties of Flexible Nickel Coated Steel Sheets for Battery Case

武 寛* 村 賢一郎 塚 清 靖 高 橋 松 石 和 後 藤 人 Kenichiro MATSUMURA Kiyokazu ISHIZUKA Takehiro TAKAHASHI Yasuto GOTO

抄 録

Ni めっき鋼板はリチウムイオン電池を含め様々な電池のケース材として採用されている。Ni めっきは バリア型防錆であり、めっき層に欠陥があると耐食性が著しく低下する。そのため、成形によるクラック 形成を低減可能な Ni めっき鋼板としてスーパーニッケル™を開発した。本めっき鋼板は、鋼板と Ni めっ き層との界面に Fe-Ni 拡散合金層を有することで、高いめっき密着性を示すとともに、通常の電析 Ni めっ き層より軟らかい Ni めっき層を有するため、特に成型後に通常の Ni めっき鋼板よりめっき被覆性が高い。 Ni めっき被覆性の高い電池ケースを使用することで、電解液への金属の溶解を抑制でき、リチウムイオン 電池の安全性を向上可能である。

Abstract

Ni coated steel sheets are used for several battery cases including Li ion battery. As Ni coating provides barrier corrosion protection, corrosion resistance of Ni coating for steel sheet gets worse when Ni coating contains some defects. Therefore, we developed SUPERNICKEL[™] as a flexible Ni coated steel sheet to prevent cracking during forming of battery cases. SUPERNICKEL[™] shows higher coverage compared to an ordinary Ni coated steel sheet especially after forming. As the Ni coated steel sheet shows good coating adhesion by Fe-Ni diffusion layer between Ni layer and steel sheet, it has higher flexibility than ordinary electrodeposited Ni layer. Since dissolution of metal to electrolyte can be reduced by less defects in coating, using battery case with high Ni coverage can improve safety of Li ion battery.

1. 緒 言

Ni めっき鋼板は Ni の耐薬品性の高さ,表面電気抵抗の 低さから,アルカリ電池や Ni-Cd 電池, Ni-MH 電池など濃 厚アルカリ溶液を電解液とした様々な電池のケース材とし て採用されてきた¹⁾。また,Ni めっき鋼板は,有機溶媒を 電解液とした円筒型のリチウムイオン電池用のケース材と しても採用されている(図1)。円筒型のリチウムイオン電 池はノートパソコンやパワーツール向けが多かったが,近 年,電気自動車用の電池として採用が拡大している。また, 電気自動車用には角型電池が広く採用されていることか ら,角型電池ケースへの適用も検討されている(図2)。

電池缶用のNi めっき方法として,製缶後にバレルなど でめっきする方法(以下,後めっき)と製缶前に板の状態 でめっきする方法(以下,先めっき)がある。後めっきは缶 外面は厚いめっき層を形成できるが,缶内面の特に底部に めっきするのが難しい。一方,先めっきは均一にめっきさ れた板を成形するので,缶内面の底部も均一なめっき層を 有し,品質安定性が高い。ただし,先めっきでは成形の際 にめっきが割れたり,剥離したりすることで,基材の鋼板

図 1 円筒型リチウムイオン電池用ケース (左:18650型,右:21700型) Cylindrical lithium-ion battery cell case (left: 18650 cell, right: 21700 cell)

が露出してしまうことがある。Ni めっきの防錆機構はバリ ア型であり, Zn めっきのような犠牲防食効果が無いため, めっき層にピンホールやクラックがあると, 耐食性が低下 することがある²。

そこで,耐食性低下の原因となる成形後のめっき欠陥を 低減するため,電池ケース用高加工性 Ni めっき鋼板とし てスーパーニッケル™を開発した。電気めっき鋼板は図3 下段のように焼鈍後,めっきするのが一般的である。それ に対して本めっき鋼板は図3上段のように冷間圧延鋼板に めっきした後,焼鈍して製造したものである。

本報では本 Ni めっき鋼板による電池ケースが,通常の Ni めっき鋼板による電池ケースより高い Ni めっき被覆性 を示す作用機構について説明するとともに,リチウムイオ ン電池用ケースおける Ni めっきの効果についても説明す る。

2. 実験方法

2.1 めっき後焼鈍型 Ni めっき鋼板の基礎特性 表1のサンプルを作製した。No.1 は一般的な焼鈍後めっ

図 2 角型電池用ケース Prismatic type battery cell case

図3 Ni めっき鋼板製造工程

(上図:スーパーニッケル™, 下図:通常 Ni めっき鋼板) Production process of nickel coated steel sheets (above: SUPERNICKEL[™], below: ordinary Ni coated steel sheet) き型のNi めっき鋼板で,No.2 がスーパーニッケルTM相当 のめっき後焼鈍型のNi めっき鋼板である。Ni めっき付着 量は17.8 g/m² と 900 g/m² の二種類とし,硬さ測定にはNi 付着量 900 g/m² のものを用いた。また,No.3 も No.2 同様 にめっき後焼鈍型のNi めっき鋼板であるが,焼鈍により Ni めっき層と鋼板の界面に形成される合金層をより詳細に 調べるため,Ni 付着量は 900 g/m² のみとし,焼鈍時間を 9 時間として拡散合金層を厚く形成した。めっき浴には**表**2 の Watts 浴を用いた。陽極にはNi 板を用い,カソード電流 密度を 20 A/dm² として電解した。原板には板厚 0.25 mm の 極低炭素鋼板を用い,焼鈍は 800℃×20 s とした。

Ni めっきの表面構造を確認するため,表面から FE-SEM (Field Emission-Scanning Electron Microscope) (JEOL JSM-7000F) で二次電子像 (SEI 像)を撮影した。Ni めっきの層 構造を確認するため,Ni めっき鋼板を垂直に樹脂に埋め込 み,断面方向から FE-SEM (JEOL JSM-7000F) で反射電子 像 (COMPO 像)を撮影した。また,No.3 に対してのみ, EDS (Energy Dispersive X-ray Spectrometry) により Ni と Fe を線分析した。Ni めっき層の硬さは,Ni めっき鋼板を垂 直に樹脂に埋め込み,めっき断面からマイクロビッカース 硬さ計で荷重を 49mN として 10 点測定し,その平均を算 出した。

Ni めっき層の加工追従性を確認するため,図4のように Ni めっき鋼板と同じ板厚(0.25mm)の板を挟んで180°曲 げ(1T曲げ)したものを樹脂に埋め込み,断面方向から FE-SEM (JEOL JSM-7000F)でSEI 像を撮影した。また,5

表 2 めっき浴組成 Electro deposition bath composition

	Concentration (g/dm ³)
NiSO ₄ ·6H ₂ O	240
NiCl ₂ ·6H ₂ O	45
H ₃ BO ₃	35

図 4 曲げ試験模式図 Schematic diagram of bending test

表 1	サンプル	
Te	st piece	

Coating amount		Process		Nata		
INO.	17.8 g/m ²	900 g/m ²	1st	2nd	Note	
1	0	0	Annealing (20s)	Ni coating	Common Ni coated steel sheet	
2	0	0	Ni coating	Annealing (20s)	Equivalent to SUPERNICKEL [™]	
3	-	0	Ni coating	Annealing (9h)	For interface analysis	

段プレスで径 15mm×高さ 40mmの缶を作製し,その耐食 性を評価した。耐食性は JIS Z 2371 に準拠した塩水噴霧試 験 (SST) 3 時間後の外観を撮影した。また,その缶の Ni めっき被覆状態を確認するため,塩水噴霧試験未実施の缶 外面の Ni 分布および Fe 分布を EPMA (Electron Probe Micro Analyzer) (JEOL JXA-8230)で分析した。

2.2 耐リチウムイオン電池電解液溶解性評価

Ni めっき鋼板が主に用いられている円筒型のリチウムイ オン電池では、捲回した電極を円筒缶に挿入後、長ければ 数日間、電解液を浸透させ、その後に蓋をして充電する。 円筒缶は負極と接続されており、缶内面は負極の電位に分 極される。一度、充電されると負極の電位は、通常は放電 時でも Li 基準で 1.2V 以下となり、Fe や Ni が溶解する可 能性は低い。しかし、初充電前の電解液の浸透中の負極の 電位は、Li 基準で 3.2V 程度になるため、Ni や Fe が溶解 する可能性がある。Ni や Fe が電解液中に溶解すると、充 電時に負極にデンドライト状に析出し、セパレーターを突 き破り、微短絡を起こす可能性がある³⁾。微短絡は自然放 電に繋がるだけでなく、発火の原因にもなりうるため、電 解液浸透時のケースからの金属溶解は少ない方が好まし い。

そこで、電解液浸透時を模擬した定電位電解により、非 めっき鋼板とNiめっき鋼板の耐電解液性を比較した。測 定には、図5に示す3電極ラミネートセルを用いた。作用 極には非めっき鋼板およびNiめっき鋼板を用いた。非めっ き鋼板として、めっき原板として用いた極低炭素鋼板、Ni めっき鋼板として表1のNo.2を用い、これらの裏面にNi タブをスポット溶接し、10mm×10mmを残して、Niタブ も含めてPP融着フィルムで熱シールした。アセトン中で

図 5 電気化学測定セル模式図 Schematic diagram of electrochemical measurement cell

超音波洗浄後,5%-硫酸で10秒間酸洗し,水洗,乾燥し た後,露点-67℃,Ar雰囲気のグローブボックス内に導入 した。

ここから, アルミニウム箔ラミネートを密閉するまでの 作業は, 同環境のグローブボックス内で実施した。対極お よび参照極には, 金属 Li 箔を用いた。金属箔を Ni タブに 圧着し, Ni タブの Li 箔と接触しない部分は, PP 融着フィ ルムで熱シールした。これらをセパレーターを介してアル ミニウム箔ラミネート内に配置し, アルミニウム箔ラミネー トの3辺を熱シールし, 袋状にした。それに電解液を1mL 加え, アルミニウム箔ラミネートを熱シールして密閉し, グローブボックスから取り出した。

電気化学測定時に作用極と対極の間隔が一定になるよう に、図6のようにラミネートセルを厚さ10mmスポンジを 介して厚さ1mmの鋼板で挟み、鋼板の間隔が10mmにな るようにボルトで締めこんだ。

電位を初充電前の負極の電位である Li 基準で 3.2V に 24 時間保持し, その間に流れたアノード電流と時間の積 (電 気量)を算出し, 非めっき鋼板と Ni めっき鋼板の溶解性を 比較した。

3. めっき後焼鈍型Niめっき鋼板の基礎特性

3.1 結果

図7にめっき表面のFE-SEM SEI 像を示す。No.1 は電析 による微細な Ni の結晶が認められた。一方, No.2 は No.1 で認められた細かい凹凸は無くなり, 平滑となった。また, 結晶粒が直径で10倍以上に成長した。

図8にめっき層断面の FE-SEM COMPO 像を示す。No.1 はNi めっき層: a と鋼板: b との界面が明確に分かれていた。一方, No.2 は界面に新たな層: e が認められた。No.3

図7 Ni めっき表面の SEM 写真 SEM image of nickel coating surfaces

図 8 Ni めっき層断面 SEM 写真 Cross sectional SEM images and EDX line analysis of nickel coatings

表 3 めっき層の硬度 (10 点平均) Hardness of nickel coatings (10-points average)

	Hardness (HV49mN)
No.1 (as coating)	231
No.2 (after annealing)	120

図9 曲げ試験結果 Results of bending

の分析から、この部分は Ni 濃度が約 5 mass%で一定となっ ており、拡散による傾斜組成を示すのは、d の部分で、表 層:c のみが純 Ni 層である。表3に焼鈍前後の Ni めっき 層の硬さ測定結果を示す。Ni めっき層は焼鈍により大幅に 硬さが減少した。すなわち、a と c はともに純 Ni 層である が、母材とともに焼鈍された c の方が軟らかい。

図9に1T曲げ後のめっき層断面観察結果を示す。No.1 ではNi めっきで覆われていないクラックが認められた。一方, No.2 ではNi めっきが薄くなっている部分は認められたが, 全体がNi めっきで覆われており, クラックは認められなかった。

図 10 に製缶材の塩水噴霧試験後の写真を示す。No.1 で

図 10 缶の耐食性評価結果 (SST: 3h) Corrosion test results of nickel coated steel cans

図11 缶側面の面分析結果(EPMA)

Element mapping results of formed nickel coated steel sheet

は赤錆が側面の広範囲に認められたが, No.2 は No.1 と比較して,赤錆の発生が明確に少なかった。

図 11 に缶側面の EPMA 面分析結果を示す。No.1 では Ni めっきが大きく欠損し Fe が露出した部分が認められた が, No.2 ではほぼ全面を Ni めっきが覆っており, ほとん ど Fe の露出は認められなかった。

3.2 考察

焼鈍により Ni めっき層が軟化したのは,図7のように電 析組織から焼鈍状組織に Ni 結晶粒径が粗大化したこと と⁴⁾,Watts 浴による Ni めっきには引張応力が残留してい たため⁵⁾,その応力が熱処理により緩和されたことによると 考えられる。

No.1 に対して No.2 の加工後の耐食性が向上したのは, 図 11 のように No.1 の方が No.2 より加工後の Ni めっき被 覆率が高かったためである。このような差は, No.2 は表 3 のように Ni めっき層が焼鈍により硬さが減少し変形し易く なったことと, 図 8 のように Ni めっき層と鋼板との界面に Fe-Ni 拡散合金層が形成され⁰ 密着性が高くなったことに

図 12 めっきピンホールの模式図 (左図:焼鈍後,右図:焼鈍前) Schematic diagrams of nickel coating pin pole (left: as plated, right: with annealing)

より,加工追従性が高まったためだと考えられる。No.1 に 対して No.2 の加工追従性が高まっているのは,図9の曲 げ試験の結果からも明らかである。また,図12のように 電析時に形成されたピンホールの底部に Ni が拡散し,腐 食されにくくなっていることも一因と考えられる。

4. 耐リチウムイオン電池電解液溶解性

4.1 結果

表4に定電位電解によるアノード電流と通電時間から算 出した電気量および,Niめっき鋼板,非めっき鋼板のア ノード電流をそれぞれFe,Niの溶解によるものとして,電 気量から算出した溶解体積を表に示す。この際,Fe,Niと もにII価の陽イオンとして溶解したとした。Niめっき鋼板, 非めっき鋼板のアノード電気量はそれぞれ16mC,142mC であり,Niめっき鋼板のアノード電気量は,非めっき鋼板 のアノード電気量の約1/9であった。また,アノード電流 が全てNiめっき鋼板はNiの溶解,非めっき鋼板はFeの 溶解によると仮定すると,アノード電気量から算出される 溶解体積は,Niめっき鋼板,非めっき鋼板それぞれ5.46 ×10⁻¹¹m³,5.22×10⁻¹⁰m³であり,Niめっき鋼板の溶解量 は、非めっき鋼板の溶解体積の約1/10であった。

4.2 考察

定電位電解中の平均電流密度は、アノード電気量が大き かった非めっき鋼板でも 1.64µA/cm² であり、初充電前の負 極の電位は、Ni めっき鋼板だけでなく、非めっき鋼板に とっても活性な電位ではないと言える[¬]。また、定電位電 解で流れた電流が全て金属の溶解によるもので、溶解した 金属が溶解面積の 1/100 (1 mm²) に集中析出するとしても、 その厚みは Ni めっき鋼板で 0.546µm、非めっき鋼板で 5.22 µm である。そのため、非めっき鋼板であってもセパレー ターの厚みが 10µm 以上あれば、セパレーターを突き破り 微短絡を引き起こすものではないが、Ni めっきによりさら に微短絡のリスクを低減できる。すなわち、加工後の Ni めっき被覆性に優れたスーパーニッケル™をケース材に用

	表 4	- 溶解電泳	記量と体積	
Anode	electricity	quantities	and dissolve	d volumes

	Anode electricity quantities (mC)	Dissolved volumes (m ³)
Ni coated steel sheet (No.2)	16	5.46×10 ⁻¹¹ *1
Non coated steel sheet	142	5.22×10 ^{-10 *2}

*1 Calculated as Ni, *2 Calculated as Fe

いることで,通常のNiめっき鋼板をケース材としたものよりリチウムイオン電池の微短絡発生リスクを軽減可能と考えられる。

5. 結 言

スーパーニッケル™の基礎特性の発現機構を明らかにす るため、通常のNiめっき鋼板No.1と、高加工性Niめっ き鋼板であるスーパーニッケル™を模擬したNo.2を実験 室で作製し、性能および物性を調査した。スーパーニッケ ル™は通常のNiめっき鋼板よりNiめっき層が軟らかく、 且つ高い密着性を有するため、加工後のNiめっき被覆率 が高く、優れた耐食性を示すことが明らかとなった。また、 Ni めっきはリチウムイオン電池の初充電前の電解液浸透の 際に金属の溶解を抑制できるため、スーパーニッケル™を ケース材に用いることで、リチウムイオン電池の微短絡の 発生リスクを軽減可能と考えられる。

6. おわりに

電池の安全性向上は電気自動車に不可欠なものであり, スーパーニッケル™はそのニーズに応えるものである。日 本製鉄(株)は製鋼から Ni めっきまでを一貫して実施可能 な唯一の国内メーカーであり,本報で説明した Ni めっきの 特性を付与しつつ,母材の特性もいかようにも調整可能で ある。また,日本製鉄グループでは,Ni めっき鋼板以外に も電池集電体用の鋼箔や負極リード用の Ni タブ,自動車 の電池パック用高強度表面処理鋼板など,電池および電気 自動車に適した素材を多数開発している。これらの総合的 な知見から,今後とも顧客のニーズに合わせた素材を提供 していく。

参照文献

日本製鉄(株)スーパーニッケル™カタログ
鵜飼義一 ほか:表面技術総覧.東京,広信社,1983, p.305
日本特許出願公告 特許公開 2007-66530.2007 年 3 月 15 日
西川精一 ほか:生産研究.18(1),16(1966)
小西三郎:金属表面技術.12(2),47(1961)
岡田健 ほか:金属表面技術.26(8),358(1975)
原信義:J. Vac. Soc. Jpn.,44(10),860(2001)

高橋武寛 Takehiro TAKAHASHI 鉄鋼研究所 表面処理研究部 主幹研究員 博士(工学) 千葉県富津市新富20-1 〒293-8511

松村賢一郎 Kenichiro MATSUMURA 鉄鋼研究所 表面処理研究部長

石塚清和 Kiyokazu ISHIZUKA 知的財産部 知的財産第一室 上席主幹 (前 広畑技術研究部 上席主幹研究員)

後藤靖人 Yasuto GOTO 広畑技術研究部 主幹研究員 博士(工学)