実験と計算による加工フェライト-パーライト組織における オーステナイトの優先核生成サイトの解析

Analysis of Prior Nucleation Sites for Austenite in the Deformed Ferrite-pearlite Microstructure by Experimental and Computational Approaches

藪 翔 平* 林 宏 太 郎 西 畑 敏 伸 Shohei YABU Koutarou HAYASHI Toshinobu NISHIBATA

抄 録

オーステナイトの優先核生成サイトを明らかにするために,加工フェライト-パーライト組織の Fe-0.1 mass%C-2.0 mass%Mn 合金を対象に,連続加熱中の組織形成過程を調査した。998K では,97%のオー ステナイト粒はフェライトの大角粒界より生成した。しかし,オーステナイトはフェライト粒内に生成しなかった。一方,1028K では,フェライトの粒内に生成するオーステナイトが認められた。熱力学計算によれば,1032K 以下では,オーステナイトの核生成はセメンタイトを必要とする。したがって,大角 粒界上のセメンタイトがオーステナイトの優先核生成サイトであるといえる。さらに,核生成理論の計算においても,以上の実験結果が説明された。

Abstract

In order to examine the prior nucleation sites of austenite, the microstructure evolution during a continuous heating was experimentally studied using an Fe-0.1 mass% C-2.0 mass% Mn alloy with the deformed ferrite-pearlite microstructure. 97 percentages of austenite grains were nucleated on high angle grain boundaries of ferrite at 998 K. However, the nucleation of austenite in the interior of ferrite was depressed at the temperature. On the other hand, such austenite was observed at 1028 K. According to the thermodynamic calculation, the nucleation of austenite requires cementite below 1032 K. Therefore, it is concluded that the prior nucleation sites of austenite are cementite particles on high angle grain boundaries in the deformed ferrite-pearlite microstructure. Moreover, the calculation of the nucleation theory is in good agreement with the experimental results mentioned above.

1. 緒 言

車体の軽量化と衝突安全性の両立が自動車業界における 重要な課題である。これらの課題を同時に解決する手段と して,車体への高強度鋼板の適用が主流になりつつある。 特に,骨格構造部材においては,引張強度が980MPa以上 の超高強度鋼が採用されている¹⁾。

骨格構造部材には,引張強度が高いことに加え,高い成 形性が要求される。一般に,鋼板の成形性は引張試験の伸 びで評価され,鋼板の引張強度が上昇するに従い,伸びは 低下する²⁾。したがって,高強度鋼の成形性を向上させる ことは難しい。

このような背景の下,課題を解決するため,DP (Dual-

Phase) 鋼板や低合金 TRIP (Transformation Induced Plasticity) 鋼板のように,高強度かつ高成形性を有する高強度鋼 が開発された。これらの高強度鋼は、フェライト相を主相 とした複合組織鋼である。DP 鋼板はマルテンサイトがフェ ライト母相に分散した組織から構成され、このマルテンサ イトは強度だけでなく,伸びにも影響する。一方,低合金 TRIP 鋼板においては、マルテンサイト以外にも、オーステ ナイト(いわゆる残留オーステナイト)が含まれ、その TRIP 効果により、伸びが著しく高くなる³⁾。したがって、 複合組織鋼板では、マルテンサイトや残留オーステナイト の制御が、高強度と高成形性の両立には重要である。

多くの高強度鋼は熱間圧延と冷間圧延の後に連続焼鈍さ れ⁴⁾,組織はこれら一連のプロセスで制御される。ところ

^{*} 鉄鋼研究所 薄板研究部 スタッフ 千葉県富津市新富 20-1 〒 293-8511

で,熱間圧延後の高強度鋼素材はフェライト-パーライト 組織であることが多い⁵。その冷間圧延鋼板(以下,冷延 鋼板)をAc₁以上に加熱することによって,オーステナイ トが生成する⁶⁻¹¹)。さらに,連続焼鈍の冷却中にて,この加 熱過程で生成したオーステナイトをマルテンサイト,ある いは,残留オーステナイトに制御する⁹。したがって,冷 間圧延されたフェライト-パーライト組織からの組織形成 過程,特に,加熱中のオーステナイト変態挙動を明らかに することは重要である。以降,冷間圧延されたフェライト-パーライト組織を加工フェライト-パーライト組織と呼ぶ。

加工フェライト-パーライト組織が加熱されると,オー ステナイトが生成するだけでなく,フェライトが再結晶し, パーライト中のセメンタイトが球状化する⁷。その際,加 熱速度はこの再結晶挙動だけでなく,オーステナイトの核 生成と成長挙動にも影響することが報告されている⁸。加 エフェライト-パーライト組織のFe-0.17mass%C-0.74mass %Mn 合金においては,加熱速度が大きくなると,オース テナイトの核生成サイト数が増加するので,オーステナイ ト変態が促進されることが報告されている⁹。この核生成 サイトはひずみエネルギー,セメンタイトの分布,フェラ イト粒界等の影響を受け変化するが,その支配因子は明ら かではない。

したがって、本稿では、Fe-0.1 mass%C-2.0 mass%Mn 合 金の加工フェライト - パーライト組織を対象に、連続加熱 時のオーステナイトの優先核生成サイトの明確化を目的と した。さらに、古典的核生成理論に基づき、オーステナイ トの優先核生成サイトおよび核生成に及ぼす影響因子を考 察した。

2. 本 論

2.1 実験方法

Fe-0.1 mass%C-2.0 mass%Mn合金を真空溶解炉で溶解し, 50kgのインゴットを作製した。インゴットを熱間圧延した 後,さらに、873Kで1時間保持し、室温まで空冷した。 スケールを除去するために、両表面を研削し、厚さ2.5 mm の熱間圧延鋼板(以下,熱延鋼板)を作製した。その熱延 鋼板を冷間圧延し、厚さ1.2 mmの冷延鋼板を作製した。 冷延鋼板を28K/sで1223Kまで加熱した際の熱膨張量を 測定した。熱膨張量から、熱膨張率と温度の関係を解析し た。さらに、熱膨張率の温度変化率を以下に示す方法で決 定した。ある温度Tの前後5Kの範囲について、熱膨張曲 線を直線で近似する。その傾きがTにおける熱膨張率の温 度変化率である。また、冷延鋼板を28K/sで985Kから 1028Kの種々温度に加熱した後、水冷した試料を作製し た。水冷した試料の断面をアルミナで研磨し、ナイタール で腐食した。

走査型電子顕微鏡 (Scanning Electron Microscopy: SEM) により, 試料の断面組織を観察した。また, 電子線後方散 乱回折法 (Electron BackScattered Diffraction Pattern: EBSD) により,998K に加熱した試料の結晶性と粒界を解析した。 EBSD の測定において,WD (Working Distance)を10mm, 加速電圧を15KVとした。また、その測定点間隔を50nm とし、縦 50 μ m、横 50 μ mの領域のデータを取得した。さ らに、電解放出型電子線マイクロアナライザー (Field Emission Electron Probe MicroAnalyzer: FE-EPMA)により、その 測定点間隔を200nmとし、998K に加熱した試料のC濃度 分布を測定した。EBSDとFE-EPMAの測定に際し、試料 の断面はコロイダルシリカで研磨した。

2.2 実験結果

2.2.1 連続加熱中のミクロ組織変化

熱延鋼板と冷延鋼板のミクロ組織をそれぞれ,図1(a)と (b)に示す。ここで,NDは板厚方向,RDは圧延方向を表 わし,以下の図においても,同様に表記する。図1(a)によ れば,一様なコントラストの領域と粒子の分散した領域が 認められた。前者は初析フェライトである。一方,粒子は セメンタイトであるので,後者はパーライトである。この ように,熱間圧延したFe-0.1mass%C-2.0mass%Mn合金を 873Kで等温保持することによって,フェライト-パーライ ト組織が形成された。なお,本図および以下の図において, フェライトとパーライトをそれぞれ,FとPで表記する。 一方,図1(b)によれば,フェライト-パーライト組織は圧 延方向に延伸した。さらに,せん断帯がフェライトもた内に 認められた。このように,冷延鋼板は加工フェライト-パー ライト組織であった。

冷延鋼板を 28 K/s で加熱した際の熱膨張量の変化を解析した結果を図 2 に示す。図 2(a)の縦軸と横軸はそれぞれ,熱膨張率と温度を示す。図 2(a)より, $Ac_1 \land Ac_3$ はそれぞれ, $988 \text{ K} \land 1110 \text{ K}$ であった。本図において, $Ac_1 \lor$ と $Ac_3 \lor L$ の温度域をそれぞれ, $I \land I \lor$ で表わす。図 2(b)

図1 Fe-0.1 mass%C-2.0 mass%Mn 合金の断面組織 (a) 熱延鋼板, (b) 冷延鋼板

Cross-sectional microstructures of (a) hot rolled and (b) cold rolled specimens in a Fe-0.1 mass%C-2.0 mass% Mn alloy (F: Ferrite, P: Pearlite, ND: Normal direction, RD: Rolling direction)

図 2 Fe-0.1 mass%C-2.0 mass%Mn 合金の冷延鋼板を 28 K/s で加熱した際の熱膨張挙動

(a) 熱膨張曲線, (b) 熱膨張の温度変化率と温度の関係 Analyzed dilatation plots as a function of temperature during heating at a rate of 28K/s in the cold rolled specimens of Fe-0.1 mass%C-2.0 mass% Mn alloy (a) Dilatometry curve and (b) the temperature derivative of dilatation

は熱膨張の温度変化率と温度の関係を示す。図2(b)によれ ば、加熱時のオーステナイト変態は複数の過程を経ること が推察される。Aziziらによれば、加工フェライト-パーラ イト組織からの変化は五つの段階からなる⁹。

本検討においても、前述した Iと IV の間のオーステナイ ト変態は二つの領域に分けられる。図 2(b)によれば、II に おいては、熱膨張の温度変化率が急激に低下した。これは、 セメンタイトの溶解を伴い、オーステナイトの核生成と成 長が同時に進行することによると考えられる。また、III に おいては、温度の上昇に伴い、熱膨張の温度変化率は低下 した後、1070K より上昇した。これは、セメンタイトは既 に消滅し、オーステナイトの成長のみが進行することによ ると考えられる⁹。また、Azizi ら⁹の方法に従い、段階 II と段階 III の境界温度を Ac_g と表わす。図 2(b)によれば、 Ac_gは 1025K であった。したがって、加熱温度が 988K か ら 1025K の範囲において、オーステナイト核が生成したと 推定される。

次に、冷延鋼板を28K/sで種々温度に加熱し、水冷して 得られた試料のミクロ組織を図3に示す。本図および以下 の図において、球状のセメンタイトとマルテンサイトをそ

図3 Fe-0.1 mass%C-2.0 mass%Mn 合金の冷延鋼板を28 K/s で各温度まで加熱した試料の断面組織 (a) 985K, (b) 998K, (c) 1028K

Cross-sectional microstructures of the specimens heated at various temperatures in a Fe-0.1 mass%C-2.0 mass% Mn alloy (F: Ferrite, P: Pearlite, C: Cementite, M: Martensite, γ : Austenite, ND: Normal direction, RD: Rolling direction)

(a) 985K, (b) 998K and (c) 1028K

れぞれ、CとMで表記する。マルテンサイトは加熱中の オーステナイトが水冷中に変態した組織である。図3(a)に 示すように,加熱温度985K(Ac₁点直下)で得られた組織 には,加工フェライト-パーライト組織中に再結晶フェラ イトが認められた。さらに,球状のセメンタイトがフェラ イトの粒界上に分布した。また,パーライトにおけるセメ ンタイトの一部が球状化した。 また、マルテンサイトは認めらなかったので、オーステ ナイトは生成していなかった。一方、図3(b)に示すように、 加熱温度998K (Ac, 点直上) で得られた組織には、マルテ ンサイトが認められた。したがって、オーステナイトは、 加熱温度985K から998K の間で核生成していたことが、 図2の解析結果と同様、ミクロ組織観察結果からも確認さ れた。さらに、図3(b)の黒い矢印で示すように、オーステ ナイトの核生成サイトは、フェライト-パーライト界面、フェ ライト粒界上、あるいは、パーライト粒内であった。ただし、 フェライト粒内においては、オーステナイトは生成してい なかった。

図 3(c)に示すように、加熱温度 1028K (Ac_{θ}点直上)で 得られた組織では、ほぼ全てのオーステナイトは圧延方向 に沿って分布した。ただし、一部のオーステナイトが再結 晶フェライトの粒内から生成している様子が認められた。

2.2.2 オーステナイトの優先核生成サイト

図 3(b)に示した試料の組織を EBSD で解析した。998K に加熱し,水冷して得られた試料の IQ 値マップ (Image quality map)と粒界マップを図4に示す。ここで,IQ 値は 菊池線の鮮明さの数値データであり,電子線の照射された 領域に存在する格子欠陥に起因するひずみ場,すなわち, 結晶性によって低下する。本マップにおいては,結晶性の 高い領域を明るく,結晶性の低い領域を暗く表示する。一 般に,IQ 値マップでは,マルテンサイトは,黒色の領域で 表わされる^{12,13)}。一方,再結晶フェライトは明るい領域, さらに,加工フェライトおよび加工パーライトはそれらの 中間となるやや暗い領域で表わされる。本解析では,IQ 値 が 300 以下の領域をマルテンサイトとした。

図 4(b)はマルテンサイトの分布と粒界マップを重ねた図 である。赤線は大角粒界 (High angle grain boundary),青線 は小角粒界 (Low angle grain boundary)を表わす。隣接す る結晶方位の方位差 θ が 15°以上 (15° $\leq \theta$)の粒界を大角 粒界,方位差が 5°以上 (5° $\leq \theta < 15°$)の粒界は小角粒界と 定義される¹⁴⁾。2500 μ m²の領域において,158 個のマルテ ンサイトが認められた。図において,大角粒界に隣接する マルテンサイトを黒の矢印で示す。一方,パーライト中の 小角粒界に隣接するマルテンサイトを緑の線で囲む。マル テンサイトが加熱中ではオーステナイトであったことを前 提とし,オーステナイトと粒界の関係を解析した結果, 97%のオーステナイト粒が大角粒界に隣接し,残り3%の オーステナイト粒は、パーライト中の小角粒界に隣接した。 本解析によれば、大角粒界はオーステナイトの優先核生成 サイトである。

さらに,冷延鋼板を28K/sで998Kに加熱し,水冷して 得られた試料について,大角粒界およびその近傍のC濃度 分布をFE-EPMAで解析した。解析結果を図5に示す。図 5(a)に示すC濃度分布によれば,赤線で囲まれた領域のC

Low angle grain boundary(5°≦θ<15°)</p>

図4 998K に加熱した試料を EBSD により解析した組織 (a) IQ 値マップ,(b) 粒界マップ Microstructure of the specimen heated at 993K using EBSD measurements (a) Image quality map and (b) Grain boundary map

濃度が高いことが分かる。その領域のミクロ組織を図5(b) に示す。その領域では,球状のセメンタイトがその周囲よ り高密度に分布した。球状のセメンタイトは,パーライト 中のセメンタイトが加熱中に球状化した組織である。図5 (a)に示した C 濃度分布と同領域におけるマルテンサイト と大角粒界を重ねた結果を図5(c)に示す。図において,マ ルテンサイトを緑の領域,大角粒界を赤線で示す。図によ れば,大角粒界に隣接するマルテンサイトは球状のセメン タイトが高密度にある組織の近傍に位置した。

図 5(c)に示す枠内のミクロ組織を図6に示す。図において、大角粒界を赤線で示す。図の矢印で示すように、大角

High angle grain bounday($15^\circ \le \theta$)

図 5 998K に加熱した試料を FE-EPMA により解析した C 分布

(a) C 濃度マップ, (b) 赤枠内部の SEM 像, (c) C 濃度 マップに示したマルテンサイトと大角粒界

C distribution of the specimen heated at 993K using FE-EPMA measurements (C: Cementite, M: Martensite) (a) C concentration map, (b) SEM micrograph in the region surrounded by red dot lines, (c) Martensite microstructures and high angle grain boundaries expressed on C concentration map

粒界に隣接するいくつかのマルテンサイトはセメンタイト を内包した。

2.3 考察

2.3.1 実験によるオーステナイト優先核生成サイトの 考察

これまでの実験結果に基づき,オーステナイトの核生成 に影響する因子について考察する。998K(Ac₁点直上)に 加熱した組織においては,97%のオーステナイト粒はフェ

Typical austenite microstructures in the specimen heated at 998K (M: Martensite)

ライトの大角粒界に隣接し、3%のオーステナイト粒はパー ライト中の小角粒界に隣接した。さらに、大角粒界に隣接 するオーステナイトは、球状のセメンタイトが高密度にあ る組織の近傍に生成する様子が認められた。このことは、 オーステナイトが核生成するためには、セメンタイトとフェ ライトの大角粒界の両方が必要であることを意味する。一 方、パーライト中の小角粒界に隣接するオーステナイトに ついては、加熱前の段階で存在するひずみエネルギーの影 響が無視できないと予想された。しかし、そのようなオー ステナイトは少数であった。したがって、本検討条件にお いては、オーステナイトの核生成に及ぼすひずみエネル ギーの影響は、大角粒界やセメンタイトによる影響に比べ て小さいと考えられる。

2.3.2 古典的核生成理論による解析

オーステナイトの核生成に及ぼすセメンタイトと大角粒 界の影響について、古典的核生成理論により解析した^{15,16}。 フェライト-セメンタイト組織からのオーステナイトの核 生成において、オーステナイト核はフェライト-セメンタイ ト界面のフェライト側に生成すると解析される¹⁷⁾。さらに、 セメンタイトがフェライトの大角粒界にある場合とフェラ イトの粒内にある場合をそれぞれ、Case I と Case II に分類 する。また、フェライトの粒界エッジ^{15,18)}がオーステナイ トの核生成サイトになる場合を Case III とする。Case I ~ III の模式図を図7に示す。本解析では、オーステナイト核の 形状に及ぼす粒界エネルギーと界面エネルギーの効果^{15,18)} を考慮せず、また、Case I と Case II の場合は半球状、Case III の場合は球状のオーステナイト核を仮定した。

古典的核生成理論によれば、定常核生成頻度 *J*^{*}_s は以下のように表わされる¹⁹。

$$J_{\rm s}^* = N_{\rm v} \beta^* Z \exp\left(-\frac{\Delta G^*}{kT}\right) \tag{1}$$

ここで, N_vは核生成サイトの密度, β* は頻度因子, Z はゼ

図7 オーステナイト核生成の模式図

- Case I: セメンタイトに接するフェライトの大角粒界から生 成するオーステナイト核
- Case II: セメンタイトに接するフェライト粒内から生成する オーステナイト核
- Case Ⅲ:フェライトのコーナーから生成するオーステナイト 核

Schematic draws of the nucleation of austenite

Case I: Austenite nucleus at the ferrite grain boundary on the cementite particle, Case II: Austenite nucleus at the ferrite interior on the cementite particle, Case III: Austenite nucleus at the corner of ferrite grain boundaries

(F: Ferrite, C: Cementite, : Austenite, σ_{aa} : Grain boundary of ferrite, $\sigma_{a\gamma}$: Interface between ferrite and austenite, $\sigma_{a\theta}$: Interface between ferrite and cementite, $\sigma_{\gamma\theta}$: Interface between austenite- and cementite)

ルドビッチ因子, kはボルツマン定数, ΔG^* は核生成の活 性化エネルギーである。Case I ~ III の各 ΔG^* を導出した。 Case I と Case II, Case III の各 ΔG^* をそれぞれ, (2)式と(3) 式および(4)式に示す。

$$\Delta G^* = \frac{64\pi}{3(\Delta G_{\nu})^2} \left(\frac{1}{2}\sigma_{\alpha\gamma} + \frac{1}{4}\sigma_{\gamma\theta} - \frac{1}{4}\sigma_{\alpha\theta} - \frac{1}{8}\sigma_{\alpha\alpha}\right)^3$$
(2)

$$\Delta G^* = \frac{64\pi}{3(\Delta G_v)^2} \left(\frac{1}{2}\sigma_{\alpha\gamma} + \frac{1}{4}\sigma_{\gamma\theta} - \frac{1}{4}\sigma_{\alpha\theta}\right)^3$$
(3)

$$\Delta G^* = \frac{16\pi}{3(\Delta G_{ay})^2} (\sigma_{ay} - 0.406\sigma_{aa})^3 \tag{4}$$

ここで、 ΔG_v は、加工フェライト-パーライト組織からの オーステナイト変態に伴う単位体積当たりの自由エネル ギー変化であり、オーステナイトの核生成の駆動力である。 σ_{aa} はフェライトの粒界エネルギー、 σ_{ay} はフェライト-オー ステナイトの界面エネルギー、 $\sigma_{a\theta}$ はフェライト-セメンタ イトの界面エネルギー、 $\sigma_{y\theta}$ はオーステナイト-セメンタイ ト界面エネルギーである。以下で述べるフェライトの平衡 濃度と ΔG_v は Thermo-Calc 2016 b (熱力学データベース TCFE8²⁰))を用いて計算した。

 ΔG_v はセメンタイトがある場合 (Case I と Case II) とそれ がない場合 (Case III) で異なる。Case I と Case II では、フェ ライトとセメンタイトは隣接するので、両組織の間におい て、Cと Mn が加熱中に分配すると考えられる。ここでは、 それらの分配がオルソ平衡に従うとする。Case III では、加 熱中のフェライトにおける C および Mn 濃度は一定とする。 なお、実験方法で述べたように、実験に供した試料は 873 K で1時間保持され、製造されている。そこで、C および Mn 濃度を 873 K におけるフェライト - セメンタイト相境界

図8 フェライト母相からのオーステナイト核生成時におけ る駆動力の模式図 Schematic draw of the driving force for an austenite

nucleus from the ferrite matrix

線フェライト側 (フェライトの平衡濃度) とした。計算によると、そのCと Mn 濃度はそれぞれ、0.0020 mass%と 1.6 mass%である。

次に、Case I~III それぞれのフェライトからオーステナ イトが核生成する場合の仮定を説明する。第一の仮定は、 CとMnがフェライト母相とオーステナイト核の間で分配 する。第二の仮定は、オーステナイト核の濃度は、フェラ イト母相とオーステナイト核のギブスエネルギー差が最大 となる、すなわち、平行接線則のように²¹⁻²³、核と母相の 濃度におけるギブスエネルギー曲線の傾きが等しくなるよ うに選択されるとした。そのギブスエネルギー差が ΔG_v で ある。フェライト母相からオーステナイトが核生成する場 合の模式図を図8に示す。図の縦軸と横軸はそれぞれ、各 相のギブスエネルギーと溶質濃度を示す。黒線と赤線はそ れぞれ、フェライトとオーステナイトのギブスエネルギー 曲線を示す。図において、フェライト母相とオーステナイ ト核の溶質濃度はそれぞれ、 $c_o \ge c_v$ である。

フェライトの粒界エネルギーは、 σ_{aa} =0.77 (J/m²)とした²⁴。また、フェライト-オーステナイトとフェライト-セメンタイト、オーステナイト-セメンタイトの界面エネルギーはそれぞれ、 σ_{ay} =0.72 (J/m²)と $\sigma_{a\theta}$ =0.71 (J/m²)、 $\sigma_{y\theta}$ =0.67 (J/m²)とした^{25,26})。

2.3.3 オーステナイトの優先核生成サイトに関する解 析結果

Case I と Case II, Case III について, ΔG_v (オーステナイトの核生成の駆動力)の計算結果を図9に示す。図の縦軸と横軸はそれぞれ, ΔG_v の絶対値と温度を示す。実線はCase I と Case II, 点線は Case IIIの結果を示す。Case I と

-37 -

図 9 Fe-0.1 mass%C-2.0 mass%Mn 合金におけるオース テナイトの核生成の駆動力と温度の関係

Driving force for the nucleation of austenite versus the temperature in the Fe-0.1 mass%C-2.0 mass% Mn alloy

Case II では、温度が 927K 以上において、フェライトとオー ステナイト、セメンタイトの三相が平衡するので、オース テナイト核が生成できる。一方、Case III では、温度が 1032 K 以上になると、 ΔG_v は0以下となり、オーステナイト核 が生成できる。図によれば、いずれの温度においても、 Case I と Case II の ΔG_v の絶対値は Case III のそれより大き いことが分かる。すなわち、C と Mn がフェライトとセメ ンタイト間で分配する場合、フェライトとセメンタイト界 面フェライト側において、駆動力が大きくなるので、オー ステナイトの核生成が促進される。

Case Iと Case II における ΔG^* (オーステナイトの核生成 の活性化エネルギー)を図 10 に示す。図の縦軸と横軸は それぞれ、 ΔG^* と温度を示す。白丸と三角のプロットはぞ れぞれ、Case I と Case II の計算結果を示す。図によれば、 温度の上昇に伴い、Case I と Case II の ΔG^* は低下する。ま た、いずれの温度においても、Case I の ΔG^* は Case II の半 分以下である。なお、1110K (Ac₃) における Case I の ΔG^* は 1.3 × 10⁻¹⁴ J である。この結果は、大角粒界上のセメンタ イトはオーステナイトの優先核生成サイトであることを示 す。さらに、オーステナイトの核生成において、セメンタ イトはその核生成の駆動力を上げ、フェライトの大角粒界 はその活性化エネルギーを下げる因子になる。したがって、 その核生成サイトの支配因子はセメンタイトと大角粒界の 両方であるといえる。

Case I の ΔG^* が Case II より低くなる理由は以下のように 解釈できる。図 7 に示すように、Case I においては、オー ステナイトの核生成に伴い、F(1)-F(2)間のフェライト粒界 が消滅する。したがって、Case I の核生成による自由エネ

図 10 Fe-0.1 mass%C-2.0 mass%Mn 合金におけるオース テナイトの核生成の活性化エネルギーと温度の関係 Activation energy for the nucleation of austenite versus the temperature in the Fe-0.1 mass%C-2.0 mass% Mn alloy

ルギー低下は Case II のそれより大きくなる。このように、 フェライト粒界とフェライト - セメンタイト界面がエッジを 形成する場合、オーステナイトは核生成しやすくなる。こ の計算結果は、図6に示した組織観察結果を説明でき、 オーステナイト粒内のセメンタイトはフェライトの大角粒 界上にあったことが推察される。

ところで,前述したように,オーステナイトは998Kで 核生成し、その核生成サイトは主にフェライトの大角粒界 であった。このような核生成は Case I に分類される。一方, 1028Kの組織に現れたフェライト粒内のオーステナイトは Case IIの核生成による組織であると考えられる。これは、 平衡計算によれば, Case III の ΔG_{u} が 0 であるためである。 図 9 によれば、998K においては、Case I と Case II の ΔG^* はそれぞれ、1.5×10-15Jと3.9×10-15Jである。998Kから 1028Kまで温度が上昇すると、Case IIのΔG*は3.9×10-15J から 1.7×10-15J まで低下し、その値は 998K における Case $I の \Delta G^*$ とほぼ等しくなる。このように、Fe-0.1 mass%C-2.0 mass%Mn 合金においては、大角粒界がオーステナイトの 核生成を促進する効果によって、その核生成温度は30K 低下する。以上のように、核生成理論の計算によるオース テナイト核生成挙動の解析は実験結果をよく説明できるこ とが明らかになった。

3. 結 言

オーステナイトの優先核生成サイトを明らかにするため に,加工フェライト-パーライト組織のFe-0.1mass%C-2.0 mass%Mn 合金を対象に,連続加熱中の組織形成過程を調 査した。998Kでは,97%のオーステナイト粒はフェライト の大角粒界より生成し,3%のオーステナイト粒はパーライ ト中の小角粒界より生成した。しかし、オーステナイトは フェライト粒内に生成しなかった。一方、1028Kでは、新 たに、フェライトの粒内に生成しているオーステナイトが 認められた。熱力学計算によれば、1032K以下では、オー ステナイトの核生成はセメンタイトを必要とする。したがっ て、大角粒界上のセメンタイトがオーステナイトの優先核 生成サイトであるといえる。

古典的核生成理論の計算によれば、セメンタイトがフェ ライトの大角粒界にある場合、998Kのオーステナイト核 生成の活性化エネルギーは1.5×10⁻¹⁵Jである。一方、セ メンタイトがフェライトの粒内にある場合、その活性化エ ネルギーは3.9×10⁻¹⁵Jである。このように、フェライトの 大角粒界は活性化エネルギーを下げ、オーステナイトの核 生成を促進する因子である。さらに、本合金では、その促 進効果によって、その核生成温度は30K低下し、この計 算は実験と一致した。

参照文献

- 1) 高橋学 ほか:新日鉄技報. (391), 27 (2011)
- 自動車用材料共同調査研究会編纂:ハイテンハンドブック. 日本鉄鋼協会,2008, p.33
- 3) 高橋学:新日鉄技報. (378), 2 (2003)
- Davies, G.: Materials for Automobile Bodies. Butterworth-Heinemann, 2003, p. 69
- 5) 東昌史 ほか:新日鉄技報. (392), 45 (2012)
- 6) Senuma, S.: ISIJ Int. 52, 539 (2012)

- 7) Yang, D.Z. et al.: Metall. Trans. 16A, 1385 (1985)
- 8) Huang, J. et al.: Metall. Trans. 35A, 3363 (2004)
- 9) Azizi-Alizamini, H. et al.: Metall. Trans. 42A, 1544 (2011)
- 10) Kulakov, M. et al.: Metall. Trans. 44A, 3564 (2013)
- 11) Ogawa, T. et al.: J. Mater. Eng. Perform. 26, 3821 (2017)
- 12) 長谷川浩平 ほか:鉄と鋼. (98), 320 (2012)
- 13) 中田伸生 ほか:鉄と鋼. (102), 253 (2016)
- 14) 金子秀雄:鉄と鋼. (56), 118 (1970)
- 15) 榎本正人:金属の相変態.内田老鶴圃, 2000, p.47
- 16) Enomoto, M. et al.: Metall. Trans. 17A, 1385 (1986)
- 17) Lee, J.K. et al.: Surface Science. 256, 147 (1991)
- 18) Clemm, J. et al.: Acta Metall. 3, 70 (1955)
- 19) Aaronson, H.I. et. al: Mechanisms of Diffusional Phase Transformations in Metals and Alloys. Taylor and Francis Group, 2010, p. 49
- 20) Thermo-Calc Software AB: TCS Steels/Fe-Alloys Database Version 8.1. Thermo-Calc Software, 2016
- Hillert, M.: Phase Equilibria, Phase Diagrams and Phase Transformations. Their Thermodynamic Basis. Cambridge University Press, 1998, p. 390
- 22) Nishizawa, T.: ISIJ Int. 40, 1269 (2000)
- 23) Cerda, F.M.C. et al.: Materials and Design. 116, 448 (2017)
- 24) Vlack, L. H. V.: Trans AIME. 191, 251 (1951)
- 25) Smith, C.S.: Trans AIME. 175, 15 (1948)
- 26) Azizi-Alizamini, H. et al.: Int. J. Mat. Res. 101, 534 (2010)

藪 翔平 Shohei YABU
鉄鋼研究所 薄板研究部 スタッフ
千葉県富津市新富20-1 〒293-8511

林宏太郎 Koutarou HAYASHI 鉄鋼研究所 薄板研究部 主幹研究員 工学博士

西畑敏伸 Toshinobu NISHIBATA 先端技術研究所 基盤メタラジー研究部 主幹研究員