放射光X線を用いた炭素繊維強化プラスチックの顕微化学状態解析

Microscopic Chemical-state Analysis of Carbon Fiber Reinforced Plastic by Synchrotron X-radiation

原 野 貴 幸* 村 尾 玲 子 Takayuki HARANO Reiko MURAO

抄 録

走査型透過 X 線顕微鏡 (Scanning transmission X-ray microscopy: STXM) は,放射光 X 線を用いた 顕微化学状態解析技術で,2次元の X 線吸収端近傍構造 (X-ray absorption near edge structure: XANES) イメージングを得られる手法である。STXM は,有機系複合材料の境界部や各材料内部の化学 結合,官能基,分子軌道配向等の化学状態解析に適している。炭素繊維強化プラスチック (Carbon-fiberreinforced plastic: CFRP) 内の化学状態分布を明らかにし,高引張強度化や高弾性率化への指針を得る ことを目的に,CFRP の STXM 測定を行った。その結果,樹脂と炭素繊維の境界部と炭素繊維内部の C *K*-edge XANES イメージングにより,(1)炭素繊維に塗布された第3相 (コーティング層)が存在し,(2) 炭素繊維内部のグラフェンシート積層構造が繊維軸方向に延びていることを明らかにした。

Abstract

Scanning transmission X-ray microscopy (STXM) is a microscopic analysis technique of chemical state using synchrotron X-radiation. It is suitable for analysis of 2 dimensional distributions of chemical state such as valence of atoms, functional groups and molecular orbital orientation. We performed STXM measurements of carbon fiber reinforced plastic (CFRP) near C *K*-edge absorption in order to obtain guidelines to enhance the tensile strength and the elastic modulus of CFRP. The results of the C *K*-edge XANES imaging suggested the presence of another phase at the interface between resin and carbon fiber, which may be a coating layer. In addition, the preferred orientation of the stuck of graphene sheets to the fiber axis direction was observed by using linear polarized X-ray beams.

1. 緒 言

複合材料において, 異種材料の境界部の性状は, 強度特 性(引張強度, 弾性率等)や熱伝導特性等のマクロな物性 発現のための重要な因子である。例えば, エポキシ系樹脂 と炭素繊維(Carbon fiber : CF)の複合材料である炭素繊維 強化プラスチック(Carbon-fiber-reinforced plastic : CFRP) では, 樹脂と CF の接着性が,強度特性の支配因子である ことが知られている。樹脂と CF の接着性を解析するため には, 化学結合, 官能基, 分子軌道配向といった化学状態 の空間分布を調べることが重要である。

このような化学状態解析には、X線光電子分光 (X-ray photoemission spectroscopy : XPS), 赤外分光 (Infrared spectroscopy : IR), X線吸収分光法 (X-ray absorption spectroscopy : XAS) 等の手法が有効である。しかしながら, それらの空間分解能は µm~mm オーダーで,境界部の詳

細な解析には不十分である。一方,1nm以下の空間分解能 を有する電子エネルギー損失分光(Electron energy-loss spectroscopy: EELS)等の電子線を用いた分光法は,有機 物への電子線照射ダメージが大きいため,CFRPへの適用 は困難である。そこで我々は,有機系複合材料の顕微化学 状態解析の手法として,放射光X線を用いた走査型透過 X線顕微鏡(Scanning transmission X-ray microscopy: STXM)に注目した。

近年のリソグラフィー技術の発達により、X線を10nm オーダーまで集光できるフレネルゾーンプレート(Fresnel zone plate:FZP)等の光学素子が開発されている。STXMは、 それらの素子で集光したナノビームを用いて、試料を走査 しながら XAS を測定することで、数10nmの空間分解能で、 X線吸収端近傍構造(X-ray absorption near edge structure: XANES)の2次元イメージングを取得する方法である。X 線は電子線に比べて、試料へのビームダメージが小さいた

^{*} 先端技術研究所 解析科学研究部 研究員 千葉県富津市新富 20-1 〒 293-8511

め、有機系複合材料の解析に適している。

XANES スペクトルからは、元素選択的な原子価数、官 能基等の化学状態の情報が得られる。加えて、直線偏光(電 場ベクトルが一定方向に振動した光)の放射光 X 線を用い ることで、電場ベクトルの振動方向に対する特定の分子軌 道の相対的な配向度も評価でき、電子線では困難な材料中 の分子軌道配向の分布も解析できる¹⁾。本報では、CFRP 中の樹脂と CF の境界部と、CF 内部の化学状態分布を解 析した結果を報告する²⁾。

2. 実 験

2.1 測定手法

STXMの基本的な原理を説明する³⁾。図1にSTXMの概 念図を示す。まず,放射光X線をFZP等の光学素子で集 光する。FZPは,複数の溝が同心円上に微細加工された素 子で,外周部ほど溝の間隔が狭くなっている。FZPを通過 した0次および高次の回折光をオーダーソーティングア パーチャー(OSA)で除去し,1次回折光のみを集光する。 最終的な集光ビーム径は,おおよそFZPの最外周の溝幅 程度である。本実験では,約40nmに集光した放射光X 線を用いた。STXMでは,このように整形,集光した放射

さらに,注目原子の吸収端近傍の複数のエネルギーにお ける2次元のX線吸収像を測定(イメージスタック測定)し, それらを合成処理することで,注目元素のXANESイメー ジングが得られる。また,直線偏光や円偏光した放射光X 線を用いれば,それぞれ分子軌道配向¹⁾,スピン磁気モー メントや軌道磁気モーメント等の磁気状態⁴⁾の2次元イメー ジングを数10nmの空間分解能で取得できる。本報で述べ る実験データはすべて,高エネルギー加速器研究機構物 質構造科学研究所放射光科学研究施設(Photon Factory) のBL-13Aに設置されたコンパクトSTXM (cSTXM)装置 で測定した。装置の詳細は参考文献^{3,5)}に詳しい。

2.2 試料作製

STXM 測定用の試料は、吸収端前後における試料の線 吸収係数の差 $\Delta \mu$ と試料厚み t の積の $\Delta \mu t$ が 1 程度になる ように厚みを調整する必要がある。本研究で解析した CFRP は市販品 (PAN (Polyacrylonitrile) 系)で、推定され る引張強度と弾性率は、それぞれ 1760 MPa, 125 GPa である。 図 2 (a) に炭素繊維断面の概念図を示す。繊維軸に垂直な 断面を C 断面 (Cross section : CS)、平行な断面を L 断面 (Longitudinal section : LS) と定義する。

試料は、図2(b)のように、1本の繊維のC断面と別の1 本の繊維のL断面を両方含むような視野で、FIB (Focused ion beam)加工とAr ミリング処理により、約10μm角で厚 みが約100nmの薄片試料を作製した。なお、図2(b)にお いて、入射電子線の方向と薄片試料の法線方向の成す角は 35°である。本研究では、図2(b)の赤点線四角部の2領域 ((I)樹脂とCFの境界部、(II)CFのC断面内部)のC K-edgeのXANESイメージングを行った。図2(c)に薄片 試料のC断面の透過電子線顕微鏡 (Transmission electron microscopy:TEM)像を示す。C断面内部に、リング状の コントラストが観測された。このリングの化学状態につい ても以下 3.2 節で議論する。

図2 (a) 炭素繊維断面の模式図, (b) 薄片試料の反射電子像, (c) CF の C 断面の TEM 像 (a) Schematic illustration of a cross section (CS) and a longitudinal section (LS) of CF, (b) Backscattered electron (BSE) image of the CFRP thin film, (c) Transmission electron microscope (TEM) image of CS of CF and resin

3. 結果と考察

3.1 樹脂と CF の境界部の観察結果

図3(a) にエネルギー E=286.5 eV における図2(b) 中(I) の領域のX線吸収像を示す。画像は70×70ピクセルで,1 ピクセルは40×40 nm²である。なお、E=286.5 eV はC-OH 結合を持つC原子の1sから π * 軌道への励起エネルギー に相当する。また、本報で議論するX線吸収像は、特に断 らない限り、図3(a)のLHR (Linear horizontal ρ /2)モード に直線偏光した放射光X線による像である。図3(a) に示 すように、樹脂とCFの境界部において、樹脂部とCF部 のいずれとも異なる吸光コントラストを示す領域が観測さ れた。図3(a) に示す黒破線内部の平均吸収コントラスト を 8bit (256 gray levels) で算出すると、樹脂部は86、CF部 は 162、境界部は224、試料のない空隙部は20となった。

一般に、X線の吸収強度は、物質毎に決まる線吸収係数 ($\mu = \rho \mu_m$ (ρ :密度、 μ_m :質量吸収係数))と試料厚みの積で 決まる。さらに、特定の化学結合由来の吸収は、その結合 の量にも比例する。つまり、このコントラスト差は、線吸 収係数、試料厚み、化学結合の量で決まる。試料の厚みは、 低速 Ar ミリングで調整しており、薄片試料の膜厚はほぼ均 質で、樹脂部や CF 部で膜厚に大きな差異があるとは考え づらい。実際、原子間力顕微鏡 (Atomic force microscopy : AFM)でも、最大高さ粗さ Rz が約 20nm であることを確 認している。よって、樹脂と繊維の境界部には、それらと は線吸収係数や化学状態の異なる第3相が存在すると推測 した。

第3相の存在の有無を考察するために、図3(a)の領域 のCK-edgeのエネルギー領域におけるイメージスタック測 定を行った。図3(a)の各黒点線部の平均スペクトルを図 3(b)に示す。なお、スペクトルは、E=292 eV (C-C 結合の $1s \rightarrow \sigma^*$ 励起)で規格化した。図3(a)の(i)樹脂部および(iii) 境界部の平均スペクトルには、284.8eV、286.5eV、288.3eV、292 eVに、C=C結合の1s→ π^* 、C-OH結合の1s→ π^* 、O(C-H) R 結合の1s→ σ^* , C-C 結合の1s→ σ^* 励起による吸収ピー ク[®]がそれぞれ確認できたが、(i)と(iii)でそれらの強度 比が異なる。なお、典型的なエポキシ樹脂にはこれらの化 学結合および官能基が含まれることが知られている[¬]。一 方、図3(a)の(ii) CF部の平均スペクトルは、C=C結合 の1s→ π^* とC-C 結合の1s→ σ^* の吸収ピークが、285.2eV、292 eV にそれぞれ観測された[®]。

この CF 部の C K-edge XANES スペクトルの結果は, CF の粉末 X 線回折 (X-ray diffraction: XRD) でグラファイト 由来の回折ピークが観測された先行研究⁸⁾の結果と矛盾せ ず, CF がグラフェンシートの積層構造の集合体であること を確認した。以上より,境界部の第3相は,樹脂と同様の 官能基で構成されているが,それらの存在比が異なる物質 であることが示唆された。一般に, CFRP の製造工程にお いて, CF を樹脂に埋め込む前に CF と樹脂との接着性を向 上させるためにコーティング材を塗布する手法が知られて いる。本研究で存在が示唆された第3相は,このコーティ ング層であると推測している。

この第3相の存在の有無をさらに考察するために,図3(a) の各ピクセルのスペクトル $I_n(E)$ (n=1~4900)を図3(b)の (i)~(iii)の平均スペクトル(それぞれ $I_{resin}(E)$, $I_{CF}(E)$, $I_{interface}(E)$)の線型結合でフィッティング(singular-value decomposition: SVD解析⁹)した。なお、SVD解析は、次 に示す条件(A),条件(B)の2通りで行った。なお,条件(A) と条件(B)におけるフィッティングスペクトル $I'_n(E)$ はそ れぞれ下記の様に表現できる。

条件 (A) (i) 樹脂 + (ii) CF の 2 スペクトル $I'(E) = a = I_{+}(E) + a_{-} \pi I_{-}(E)$

ⁿ (E) (i) 樹脂 + (ii) CF + (iii) 境界部の 3 スペクトル

$$I'_{n}(E) = b_{n, resin} I_{resin}(E) + b_{n, CF} I_{CF}(E) + b_{n, interface} I_{interface}(E)$$
 (2)

(1)

図3 (a) E=286.5eV における図2(b)中(I)の領域のX線吸収像

- 黒破線領域は,それぞれ (i) 樹脂,(ii) CF (L 断面),(iii) 境界部の平均スペクトルの算出に用いた領域である。これらのスペ クトルは図 4 (c) の RGB 像を描く際の SVD 解析に用いた。
 - (b) 図 3 (a) の (i) 樹脂, (ii) CF (L 断面), (iii) 境界部の平均スペクトル

(a) X-ray absorption contrast image of Area (1) shown in Fig. 2(b) at E=286.5eV.

Black-dashed squares show regions of averaged XANES spectra of (i) resin, (ii) CF (LS), and (iii) the interface used for RGB deconvolution of Fig. 4(c).

(b) Averaged XANES spectra of resin, CF (LS), and the interface in each region shown in Fig. 3(a).

図 4 (a) 条件 (A) 樹脂と CF (L 断面) のスペクトルを用いた SVD 解析後の図 3 (a) の各領域の平均残渣スペクトル (b)条件(B)樹脂, CF(L断面),境界部のスペクトルを用いた SVD 解析後の図3(a)の各領域の平均残渣スペクトル

(c) (b) の SVD 解析時の係数 $b_{n, resin}$, $b_{n, cF}$, $b_{n, interface}$ を用いた図 3 (a) の RGB 像 Residual curves of each region in Fig. 3 (a) after SVD analyses of (A) resin/CF(LS) and (B) resin/CF(LS)/interface are shown in (a) and (b), respectively. (c) RGB (red: resin, green: CF(LS), blue: third phase) color-deconvoluted image of the interface between resin and CF(LS). The two-way arrow is the polarization of LHR mode of X-ray beams.

図5 (a) 図2 (b) 中 (II) の領域の樹脂, CF (C 断面), CF 内部リングの平均スペクトル

- (b) 図 5 (a) の 3 スペクトルで SVD 解析した際の図 2 (b) 中 (II) の RGB 像
- (c) 直交する直線偏光 (LHR と LVS) における CF (C 断面) と CF (L 断面) の平均スペクトル
- (d) 本研究で得られた CF 内部のグラフェン積層構造の模式図
- 青と赤の両矢印は,グラフェン積層構造の積層方向,グラフェンシート方向をそれぞれ示している。

(a) Averaged XANES spectra of resin (red), CF(CS) (green), and inner ring in CF(CS) (blue) in (II) of Fig. 2(b). (b) RGB (red: resin, green: CF(CS), blue: inner ring in CF(CS)) color-deconvoluted image in (II) of Fig. 2(b). Two-way arrow shows the polarization of LHR of X-ray beams. (c) Averaged XANES spectra of CS and LS of CF using two types of polarized X-ray. These spectra are normalized by the intensity at 292 eV. (d) Schematic illustration of the distribution of graphene sheets in CF. Blue and red two-way arrows are the thickness and plane directions of graphene sheets, respectively.

ただし, $a_{n, resin}$, $a_{n, CF}$, $b_{n, resin}$, $b_{n, CF}$, $b_{n, interface}$ は実数定数で ある。条件(A)と(B)のフィッティングにおける図3(a) の各黒破線部の平均残渣スペクトルを図4(a)と(b)にそ れぞれ示す。図4(a)も(b)も(i)樹脂部と(ii) CF部にお いては、いずれもほぼ残渣がなくフィッティングできた。 一方, (iii) 境界部については, 条件 (B) では, (i), (ii) と 同様にフィッティングできたが、条件(A)の樹脂とCFの スペクトルのみでフィッティングした場合は、大きく残渣 が残り、これらの混合スペクトルでは説明できなかった。 これより,図3(a)中(iii)の領域には、樹脂でもCFでも ない化学状態の物質が存在することを示唆する結果を改め て得た。条件 (B) のフィッティングでの各スペクトルの係 数 $b_{n, resin}$, $b_{n, CF}$, $b_{n, interface}$ の値を用い, 図3 (a)をRGB (Red Green Blue) で色付けすると、図4(c) が得られた。これよ り樹脂と CF の境界部に存在するコーティング層の厚みは

約100nmで、約200~300nmの範囲に渡って樹脂にまだ ら状に浸透していることがわかった。このような2次元の XANES イメージングのスペクトル解析を通じて、CFRP の 高強度特性化へ向けた理想的なコーティング層の種類、厚 み、樹脂への浸透の度合いを提案できる可能性がある。

3.2 CF 内部

次に,図2(b)の(II)(CFのC断面内部)のイメージスタッ ク測定を行い. C 断面内部の化学状態を解析した。図5(a) に C 断面の樹脂部, マトリックス部, 内部のリング部の平 均スペクトルを示す。なお、各スペクトルは図3(b)のス ペクトルと同様に E=292 eV の強度で規格化している。CF 断面のマトリックス部と内部リング部でスペクトルには, 差異がないことがわかった。TEM 像や X 線吸収像でリン グ構造が観測されている一方で、C K-edge のスペクトルに 変化がなく, X線吸収強度はリング部の方が高かったこと から,化学状態は同じであるが,リング部の密度がマトリッ クス部より高いと考察した。

最後に、L断面とC断面の平均スペクトル(それぞれ、 図3(b)の緑線と図5(a)の緑線)における $1s \rightarrow \pi^*$, $1s \rightarrow \sigma^*$ 由来の吸収ピークの強度比 (π/σ 比: ($1s \rightarrow \pi^*$ の吸 収強度) \div (1s $\rightarrow \sigma^*$ の吸収強度))の比較を行った。一般に、 直線偏光の向きと分子軌道の向きの相対関係によって、そ の分子軌道への励起に伴う吸収強度が変化することが知ら れているい。偏光と分子軌道が平行な場合に最も吸収が強 くなり,直交する場合に最も弱くなる(吸収しない)。図5(c) に、直交する2つの直線偏光 (LHR モードと LVS (Linear vertical $\sigma/2$) モード) で取得した C 断面, L 断面の平均スペ クトルを示す。なお、スペクトルは、E=292eV で規格化し ている。C断面のスペクトルのπ/σ比は偏光により変化し なかった。一方で、L 断面では、LHR の偏光の方が、LVS よりも π/σ 比が小さくなっていることがわかる。これは、 LVS の偏光の向きに π分子軌道が配向していることを示し ている。即ち、CF内部は図5(d)の模式図に示す様に繊維 軸方向にグラフェンシートの積層構造が伸びていて、C断 面では、測定した STXM の空間分解能(約40nm)以下の スケールの π 軌道が様々な方向に配向したドメインの集合 構造になっていると推測できる。

4. 結 言

本報では,STXM を用いて CFRP の化学状態分布を解析 し,下記の結論を得た。

- (1) C K-edge 領域のイメージスタックで得られた X 線吸収 スペクトルを解析することで, CFRP の樹脂と CF の境 界部に第3相(コーティング層と推測)の存在を確認し, その厚みが約100nm であることや樹脂への浸透の度合 いを捉えることに成功した。この知見から, CFRP の高 強度特性化へ向けた理想的なコーティング層の種類, 厚み,樹脂への浸透の度合いを提案できる可能性があ る。
- (2) CF の C 断面内に観測されたリング状部の C K-edge X 線吸収スペクトルを測定し、CF マトリックス部とリン グ部は、炭素周囲の化学状態は同等で、密度が異なる ために TEM 像や X 線吸収像でコントラストが観測さ れると推察した。
- (3) 直交する直線偏光を用いた2つの放射光 X 線の吸収ス ペクトルの差異から、炭素繊維内では繊維軸に垂直な 方向にπ分子軌道が配向し、C 断面内においては、π 軌道の配向したドメインは少なくとも40nm (本研究で 用いた STXM の空間分解能) 以上の大きさのものは存 在しないことがわかった。

本報では, STXM の適用事例として, CFRP を取り上げ たが, STXM は, 空間分解能約 40 nm で, ①原子種, ②原 子価数,③官能基,④分子軌道配向,⑤磁気情報等の2 次元イメージングを取得できる手法であり,幅広い材料分 野に適用可能である。今後,放射光X線を用いた顕微鏡は, 光学素子の高機能化による空間分解能の向上や,次世代放 射光光源による高輝度化,高コヒーレンス化による高感度 化,高空間分解能化が期待できる。新日鐵住金(株)が扱っ ている原料,製品,副生成物は,広義な意味でその多くが 複合材料である。新日鐵住金のあらゆる材料開発,プロセ ス開発を加速する解析技術のひとつとして,顕微化学状態 技術の高度化を進める。

謝 辞

本研究は,高エネルギー加速器研究機構物質構造科学 研究所木村正雄教授,武市泰男助教,東京大学大学院理 学系研究科高橋嘉夫教授との共同研究によるものである。 この場を借りて,日ごろのご指導,ご協力に感謝を述べたい。 また,高エネルギー加速器研究機構間瀬一彦准教授,広 島大学 菅大暉氏,日鉄住金テクノロジー(株)水尾有里氏 をはじめとする多くの方々に多大なご協力と支援を頂いて おり,ここで改めて心からの感謝の意を表したい。

参照文献

- 1) Watts, B., Schuettfort, T., McNeill, C.R.: Adv. Funct. Mater. 21, 1122 (2011)
- Harano, T., Murao, R., Takaichi, Y., Takahashi, Y., Kimura, M.: J. Phys: Conference Series. 849, 012023 (2017)
- Takeichi, Y.: Journal of Japanese Society for Synchrotron Radiation Research. 29 (6), 282 (2016)
- Ueno, T., Hashimoto, A., Takeichi, Y., Ono, K.: AIP Advances. 7, 056804 (2017)
- Takeichi, Y., Inami, N., Suga, H., Miyamoto, C., Ueno, T., Mase, K., Takahashi, Y., Ono, K.: Rev. Sci. Instrum. 87, 013704 (2016)
- 6) Moffet, R. C.: LBNL Paper. LBNL-4245E (2011)
- Hedrick, J. L., Yilgor, I., Jurek, M., Hedrick, J. C., Wilkes, G. L., McGrath, J. E.: Polymer. 32, 2020 (1991)
- 8) Qin, X., Lu, Y., Xiao, H., Wen, Y., Yu, T.: Carbon. 50, 4459 (2012)
- 9) Hitchcock, A. P.: http://unicorn.mcmaster.ca/aXis2000.html (2009)

原野貴幸 Takayuki HARANO 先端技術研究所 解析科学研究部 研究員 千葉県富津市新富20-1 〒293-8511

村尾玲子 Reiko MURAO 先端技術研究所 解析科学研究部 主任研究員 博士(工学)