技術論文

知能圧延機の圧延設定・制御技術の開発と実用化

Set-up and Control Technology of NSSMC Intelligent Mill

小 川 茂*	山 田 健 二	大 塚 貴 之
Shigeru OGAWA	Kenji YAMADA	<i>Takayuki OTSUKA</i>
井 上 剛	若 月 邦 彦	空 尾 謙 嗣
Tsuyoshi INOUE	Kunihiko WAKATSUKI	Kenji SORAO
竹 下 幸一郎	池 田 佳士郎	中 川 大 輔
Koichiro TAKESHITA	Keishiro IKEDA	Daisuke NAKAGAWA

抄 録

圧延荷重分布をリアルタイムに検知して制御できる知能圧延機を厚板矯正機(Oita Plate Leveler: OPL)として実用化するための操業ソフトウェアおよび設定・制御技術を開発した。分割補強ロール(BUR) 位置の零点調整手続きについては作業ロール(WR)の水平たわみを極小にする分割 BUR 荷重分布すなわ ち零調荷重をラグランジェの未定乗数法を用いて演算し、当該零調荷重を実現するための効率的な分割 BUR 位置調整方法を開発した。圧延中の形状制御に関しては、被矯正材のオフセンター量と温度分布を 考慮し、冷却後の平坦度と残留応力分布を所望の値にすることのできる形状制御方法を開発し実用化し た。最後に一連の知能圧延機開発研究によってもたらされた形状制御理論の進歩と今後の課題について 整理した。

Abstract

Operational scheme and flatness control algorithm with related mathematical models are developed for OPL (Oita Plate Leveler) which is a large scale embodiment of the NSSMC Intelligent Mill (NIM); NIM is a new concept rolling mill which can estimate and control roll force distribution across the width acting between the work roll (WR) and the rolled material. For zero adjustment procedure of individual position control system of divided back-up rolls (BURs), force distribution of the BURs minimizing the WR horizontal deflection is calculated by means of Lagrange's method of undetermined multipliers, and systematic way of realizing the target BUR force distribution is developed. Considering plan view inclination and temperature distribution of inlet material, flatness control algorithm is developed and practiced to obtain desired flatness as well as residual stress of the rolled material after cooling. Concluding research and development of NIM, contributions to flatness control theory for flat products and future tasks are pointed out.

1. 緒 言

従来の板圧延における形状制御すなわち平坦度制御は, 要求される板厚分布の制御精度が極めて厳しいりことも あって,計算機による設定機能のみでは十分な制御精度が 得られず,圧延機後面の形状検出装置によって形状の乱れ を実測して圧延機の形状制御装置にフィードバックするこ とが必要となっている。このような仕組みのシステムの場 合,圧延機から形状検出装置までの材料の移送時間が制御 上の無駄時間となるので,外乱が発生して形状が乱れてか らこれを修正するまでに圧延された材料には形状不良が残 る上,無駄時間の存在が応答の早い制御を阻むため十分な 形状制御が実現できない場合が多く,歩留低下や形状矯正 のための工程の増加による生産性の低下が避けられない。

以上のような従来型の圧延機システムの問題を根本的に 解決すべく, 圧延機自身が形状検出機能を有する新しいコ ンセプトの新型式知能圧延機が提案され²⁾, 実機薄板ミル 規模のプロトタイプミルを用いて, 圧延荷重分布推定機能 に基づく形状検出・制御システムが構築され実証されてい る³⁾。さらに厚板精整ラインにおける形状矯正工程の生産 性向上および機能向上を狙って, 最大圧延幅 5500mmの 厚板矯正機 OPL (Oita Plate Leveler) として知能圧延機を 適用するミルハードウェア検討が実施され実機化されている⁴⁾。

知能圧延機は従来の圧延機とは全く異なるコンセプトの 圧延機であり、従来の圧延機の設定・制御技術を適用する ことができない。そこでここでは知能圧延機専用の操業ソ フトウェアおよび設定・制御技術を新たに開発し、OPL に 実装したので報告する⁵。

2. OPLの主要設備仕様⁴⁾

OPLの圧延条件を表1に示す。矯正対象となる厚鋼板は、 板厚10~65mm、板幅1400~5500mm、板長6.0~63.5m である。OPLは新日鐵住金(株)大分製鉄所厚板工場剪断 ラインの最上流に設置され、冷却床から払い出された剪断 前の大板を0.2%の極軽圧下率で圧延して形状を矯正する。 OPLのロール寸法を表2に、その基本構造を図1に示す。 OPLとして採用した知能圧延機は圧延材~ワークロール (WR)間に作用する圧延荷重分布をリアルタイムに推定し て制御する機能を有する圧延機であり、圧延荷重分布は板 形状を強く反映しているので時間遅れのない形状検出およ び制御が可能なことが従来の圧延機にない特徴である。

WR 直径は 330 mm, 胴長は 6010 mm である。上バックアッ プロール (BUR) は圧延荷重分布推定のため個別ロードセ ルを配した直径 550 mm の分割 BUR となっており, クラス ター角 41°で,入側 9個,出側 10個,合計 19個を千鳥配 置しており,さらに上分割 BUR は形状制御のため油圧サー ボで個別偏心軸の角度調整を行う方式の個別圧下制御機構 を有している。なお各分割 BUR の胴長は 320 mm であるが, 入側と出側の BUR を合わせて分割 BUR は幅方向に 295 mm ピッチで配置されている。各分割 BUR の最大荷重 は 2.74 MN であり圧延機全体としての鉛直方向の最大圧延 荷重は 37.2 MN である。

下 BUR は上 BUR と幾何学的に上下対称に配置されて

Item		Specification
Plate size	Thickness	10 - 65 mm
	Width	1 400 - 5 500 mm
	Length	6 - 63.5 m
Plate temperature		R.T 250 °C
Reduction		0.2 %
Rolling speed		10 - 120 m/min
Control interval		30 ms

表1 OPLの圧延条件 Rolling conditions for OPL

表2 OPL のロール寸法 Roll dimensions of OPL

	WR	BUR (×19)
Diameter (mm)	330	550
Barrel length (mm)	6010	320
Chock span (mm)	6 6 9 0	-

図I OPL の基本構造 Schematic view of OPL

いる。形状検出・制御機能は上 BUR 系で実現するため, 下 BUR にはロードセルおよび個別圧下機能はないが,入 側および出側それぞれ共通の偏心軸による下 WR たわみ補 償機能を有する。

3. OPLの設定・制御技術の開発

3.1 分割 BUR 位置の零点調整機能

Sendzimir 圧延機のような従来のクラスター型圧延機の 場合,幅方向に並んだ分割 BUR には共通軸があり。,こ の軸が BUR 位置の基準となるため分割 BUR 位置の零点 調整は不要である。しかしながら OPL の場合,上 BUR 系は, 各分割 BUR に作用する荷重を正確に測定する必要がある ため共通軸を配することは許されない。もちろん幅方向に 並んだ各分割 BUR は WR に対する相対位置が同じになる ように設計,製作されるが,個別の偏心軸とこれを支持す るチョック,そしてロードセルもすべて個別に配備される ため,これらの寸法誤差の蓄積によって各分割 BUR の位 置に誤差を生ずることになる。

そこで通常の 4Hi ミルや 6Hi ミルの圧下位置零点調整に ならって OPL でもキスロール締め込みによる分割 BUR 位 置の零点調整を実施することにした。このとき 4Hi ミル等 の場合は作業側 (WS)・駆動側 (DS)の圧下装置を均等 荷重で締め込むので,知能圧延機の場合も各分割 BUR 均 等荷重が基本と考えた。しかしながら OPL の場合は,分 割 BUR が入側9個,出側 10 個に千鳥配置となっているの で,全ての分割 BUR に同じ荷重を負荷すると,WR に作 用する水平方向荷重のバランスがとれなくなるため,その ような負荷を与えることは不可能である。そこで BUR 荷 重合計を 2 等分し,入側,出側それぞれの分割 BUR に均 等荷重を負荷することを考える。OPL の場合,例えば,入 側 BUR に各 980kN,出側 BUR に各 882kN 負荷すること

図2 OPLのWR水平たわみ(合計BUR荷重17.64MN) WR horizontal deflection for OPL with total BUR force 17.64 MN

にすれば分割 BUR 荷重合計 17.64 MN で WR に作用する 水平荷重はバランスがとれる。

このような入側,出側それぞれ均等荷重という考え方は WRに作用する水平方向荷重バランスのみに配慮して直感 的に決めたものであるが,OPLのWRのように直径に比べ て胴長が著しく長いロールを使用するにあたってはWRの 水平方向たわみが過大になる懸念が残る。そこで上記負荷 に対してWRの水平方向たわみを計算した。結果を図2に 示す。WR水平たわみが中央部で15mm程度と非常に大き くなることがわかる。なお図2の横軸はWRの支点間距離 の1/2で規格化した各分割BUR中心位置を示している。 この15mmの水平たわみはロールギャップ誤差としては約 0.34mmとなるので形状制御の観点からは見過ごすことの できない大きな誤差である。

そこで,分割 BUR 荷重分布を調整して,OPL の分割 BUR 位置零点調整時の WR 水平たわみを小さくすること を考える。図2に見たように入側・出側 BUR 均等荷重と した場合に大きな WR 水平たわみが発生するのは,入側分 割 BUR 荷重 980kN,出側分割 BUR 荷重 882kN となって おり,WR 胴部中央の任意の領域を切り出して考えた場合, 入側の水平方向力が常に大きくなるためと考えられる。

そこで,入側9個の分割 BUR 荷重は 980kN のままで, 出側 10 個の分割 BUR のうち中央部8 個の分割 BUR 荷重 を 980kN,両端に位置する分割 BUR の荷重をその 1/2 の 490kN とする荷重分布を考える。この荷重分布であれば入 側,出側の荷重合計は平衡条件を満足し,WR 中央部の任 意の領域を切り出しても水平方向力に大きな不平衡を生じ ることはないのでWR 水平たわみが小さくなると推測され る。計算結果を図2に併せて示す。予想通り当該荷重分布 によってWR 水平たわみは2mm 程度にまで小さくなって いる。しかしながら,OPL は製品の形状矯正を目的とし, 圧延材の先端部から良好な形状制御を行うことが求められ るので,零調時のWR 水平たわみはさらに小さくすること が望まれる。

そこで、WR 水平たわみを極小化する分割 BUR 荷重分 布を理論的に求めることを考える。i 番目の分割 BUR の荷 重を q_i とすると、既に述べてきたように WR の水平方向の 力およびモーメントの平衡条件が成立するので q_i は次式を 満足しなければならない。

$$T_{i}^{x}q_{i} = 0, \quad z_{i}T_{i}^{x}q_{i} = 0 \tag{1}$$

ここで, $T_i^x = \cos \theta_i \circ \sigma_i li i$ 番目の分割 BUR と WR との共 通法線の方向を圧延方向で定義した x 軸から反時計回りに 見た角度, $z_i li a$ 番目の分割 BUR 中心の幅方向位置を示す z 座標(原点はミルセンター)である。本論文では重複添 字に対する総和規約を採用するが,()付きの添字は総和 規約を無視する。

また前記した直感的に求めた分割 BUR 荷重を基準分割 BUR 荷重 \bar{q}_i として,これをベースとして WR たわみを極 小化する分割 BUR 荷重を求めることを考える場合,鉛直 方向の力およびモーメントは変化しないようにすべきであ り、求めるべき分割 BUR 荷重 q_i は $T_i^y = \sin \theta_i$ として次式 を満足しなければならない。

 $T_{i}^{y}q_{i} = T_{i}^{y}\overline{q}_{i}, \quad z_{i}T_{(0)}^{y}q_{i} = z_{i}T_{(0)}^{y}\overline{q}_{i}$ (2) その上で WR の水平たわみ極小条件を導入する。分割 BUR 荷重 q_{i} による上 WR の水平たわみ x_{i}^{WT} は,梁曲げ理 論から与えられる WR の変形マトリクス ^{7,8)} を K_{ij}^{WT} とする とき次式で与えられる。

$$x_{i}^{WT} = -K_{ii}^{WT} T_{(i)}^{x} q_{i}$$
(3)

WR たわみ評価の基準として No.1 分割 BUR の x 方向位 置と No.N 分割 BUR (N=19) の x 方向位置を結ぶ直線を 採用し,この基準線からの WR 水平たわみの相対値,すな わち次式の絶対値を最小化することを考える。

 $\begin{bmatrix} K_{ij}^{H} - (a_{i}K_{1j}^{H} + b_{i}K_{Nj}^{H})] \cdot q_{j}$ (4) CCC, $K_{ij}^{H} = K_{ij}^{WT}T_{(j)}^{x}, a_{i} = (z_{N} - z_{i})/(z_{N} - z_{1}), b_{i} = (z_{i} - z_{1})/(z_{N} - z_{1})$ $z_{1}) \subset \mathcal{B} \gtrsim 0$

式(1),(2) で与えられる拘束条件のもと,式(4) で与え られる WR たわみの相対値と,基準分割 BUR 荷重との差 異を極小化することは,次の関数 F の停留問題となる。

$$F = \frac{1}{2} \left[\overline{K}_{ij}^{H} q_{j} \overline{K}_{ij}^{H} q_{k} \right] + \frac{1}{2} w_{i} \left\{ \left(q_{i} - \overline{q}_{i} \right) / \overline{q}_{(i)} \right\}^{2} + \lambda_{m} \left(T_{i}^{m} q_{i} - Q^{m} \right)$$

$$(5)$$

ここで, $\bar{K}_{ij}^{H}q_{i}$ は式 (4), $T_{i}^{m}q_{i}=Q^{m}$ (m=1,2,3,4) は式 (1),(2) の, それぞれ簡略表現であり,式 (5)の右辺第2項の w_{i} は 基準分割 BUR 荷重にどれほど忠実な分割 BUR 荷重分布 とするかを調節する重み係数である。また λ_{m} (m=1,2,3,4) は,式 (1),(2)の拘束条件を導入するための Lagrangeの未 定乗数である。式 (5)の関数 $F \circ q_{i}$ および λ_{m} に関する停 留条件から得られる連立一次方程式を解くことで,基準分 割 BUR 荷重をベースとしつつも WR 水平たわみを抑制で きる分割 BUR 荷重分布が求められる。

図3 最適化された零調用の分割 BUR 荷重分布 Optimized BUR forces for zero adjustment procedure

以上述べた手法を用い,前記した中央部均等荷重分布を 基準分割 BUR 荷重分布とし,この基準値に対する重み係 数を w_i=1.0 (*i*=2, ..., 18), w₁=w₁₉=0.03 として WR 水平た わみを極小化する分割 BUR 荷重を求めた。図2に結果と して得られた WR 水平たわみ,図3には分割 BUR 荷重分 布を示す。図3に見られるように WR 水平たわみを極小化 する分割 BUR 荷重分布は基準とした中央部均等分布より 不規則な分布形態を示しているが,図2に見られる WR 水 平たわみは大幅に小さくなっており,最大でも約0.13mm に抑えることができている。0.13mmの水平たわみはロー ルギャップ誤差に換算すると約0.03µm となり,形状制御 の観点からも無視できるレベルである。

次にこの荷重分布を分割 BUR 位置零点調整時の目標分 割 BUR 荷重 q_i^0 として,これを OPL で実現する作業方法 について考える。

まず全ての分割 BUR 位置を機械的中立位置に設定し、 上下 WR キスロール状態で予め設定した全体荷重(BUR 荷重の合計値で上記の例では 17.64MN)まで WS・DS 一 対の主圧下装置を用いて締め込み、分割 BUR 荷重の現在 値 q_i (i=1, ..., 19)を得る。なお主圧下装置とは図1に示 すように上 BUR キャリッジを支える上フレーム全体の位置 を制御する油圧圧下装置である。

次に分割 BUR の個別圧下位置を調整して零調荷重分布 q_i^0 を実現するのであるが、特定の分割 BUR の圧下位置を 操作しても WR たわみ変化および分割 BUR を支持してい るキャリッジ・フレームの変形を通じて他の分割 BUR の 荷重も変化するので、19 個の分割 BUR の圧下位置を1 個 ずつ手動で調整して正確に目標荷重分布 q_i^0 を実現するの は著しく効率の悪い作業となる。そこで、ここでは OPL の ロール変形等を考慮して全ての分割 BUR 位置を一気に操 作して目標荷重分布を実現するアルゴリズムを開発した。 なお以下の OPL 変形のモデル化は後述する形状制御ロジッ クと共通する部分が多いのでやや詳しく述べておく。

上分割 BUR の個別圧下位置が u_i ,上分割 BUR 荷重が q_i のときの上分割 BUR の WR ~ BUR 共通法線方向の変位を反映した上分割 BUR 位置 u_i^{BT} は次式で表現される³⁾。

 $u_i^{BT} = K_{ij}^{BT} (q_j - q_j^0) - (u_i + U_i^0)$ (6) ここで, K_{ii}^{BT} は上分割 BUR の変形マトリクス, U_i^0 は零調 条件($u_i = 0$, $q_i = q_i^0$)時の分割 BUR の絶対位置を表している。 なお K_{ii}^{BT} および U_i^0 の同定方法については後述する。

WR ~ BUR 共通法線方向の上 WR たわみ u_i^{WT} は式 (3) で表される水平方向たわみ x_i^{WT} と鉛直方向たわみ y_i^{WT} を合成して次式で与えられる。

$$u_{i}^{WT} = T_{(i)}^{x} x_{i}^{WT} + T_{(i)}^{y} y_{i}^{WT}$$
⁽⁷⁾

ここで WR の鉛直方向たわみ y_i^{WT} は上下 WR 間に作用する荷重分布を p_i とするとき次式で計算される。

 $y_i^{WT} = K_{ij}^{WT} (p_j - T_{(j)}^{y}q_j) + c^{y}z_i + d^{y}$ (8) ここで c^{y} , d^{y} は鉛直方向の剛体変位を表すパラメータであ る。上下 WR 間に作用する荷重分布は下ロール系と上ロー ル系との適合条件によって決定されるが,下ロール系から 上 WR までを等価 2Hi ミル⁷表現して当該ロール変形マト リクスを K_{ij}^{W} と表現すると式 (8) は次式のように表現する ことができる。

 $y_i^{WT} = -K_{ij}^W T_{(j)}^{y} q_j + f_i$ (9) なお式 (9) を得る過程については次節において説明を補足 する。

上分割 BUR と上 WR との変位の適合条件は次式で与えられる。

$$K_{ii}^{fT}q_{i} = u_{i}^{WT} - u_{i}^{BT} + C_{i}^{WT}$$
(10)

ここで, K_{ij}^{fT} はロール偏平変形マトリクス⁹, C_i^{WT} は上 WR プロフィルを表す。

以上の方程式系より,分割 BUR 個別圧下位置変化 Δu_i を与えたときの分割 BUR 荷重変化 Δq_i を次のようにして求 める。式(6)の分割 BUR の変位計算式より Δu_i および Δq_i の変化量を前提とした分割 BUR 位置変化 Δu_i^{BT} は次式で 計算される。

 $\Delta u_i^{BT} = K_{ij}^{BT} \Delta q_j - \Delta u_i$ (11) 式 (7) に式 (3) および式 (9) を代入し相対変化のみ抽出す ると WR のたわみ変化量 Δu_i^{WT} は次式で計算される。

 $\Delta u_{i}^{WT} = - \left(T_{(i)}^{x} K_{ij}^{WT} T_{(j)}^{x} + T_{(i)}^{y} K_{ij}^{W} T_{(j)}^{y} \right) \Delta q_{j}$ (12) また式 (10) の上 WR ~ BUR 変位適合条件の相対値表現は 次式のように表現される。

$$K_{ii}^{fT} \Delta q_i = \Delta u_i^{WT} - \Delta u_i^{BT}$$
⁽¹³⁾

式 (13) に式 (11), (12) を代入すると,次の Δu_i と Δq_i との 関係式を得る。

 $\Delta u_{i} = \left(T_{(i)}^{x} K_{ij}^{wT} T_{(j)}^{x} + T_{(i)}^{y} K_{ij}^{w} T_{(j)}^{y} + K_{ij}^{BT} + K_{ij}^{fT}\right) \Delta q_{j}$ (14) したがって,分割 BUR 荷重の現在値 q_{i} から目標零調荷重 q_{i}^{0} を実現するための分割 BUR 変位 Δu_{i} は、式 (14) に Δq_{i} $= q_{i}^{0} - q_{i}$ を代入することで求められる。

このようにして求められた Δu_i を出力すると,式(14)の()内のマトリクスすなわち式(14)右辺の Δq_i の係数マトリクスが正確であれば目標零調荷重 q_i^0 が一回の分割 BUR位置修正で実現されることになるが,現実的には()内のマトリクスにも誤差がありミル変形特性にも若干の非線形性があるので一回の修正で q_i^0 が正確に実現される可能性は低い。しかしながら, Δq_i の係数マトリクスに多少誤差

があっても式 (14) で計算される Δu_i を出力することで分割 BUR 荷重は着実に q_i^{0} に近づいて行くので,これを数回繰 り返すことで目標零調荷重 q_i^{0} が実現できる。

なお分割 BUR 位置零調は後述するミル変形特性同定を 実施する前,例えば,圧延機を新しく設置した直後にも実 施しなければならず,その場合は式(14)中の K_{ij}^{sT} は未知 である。このような場合でも,式(14)における Δq_i の係数 マトリクスの要因の中ではWR 一本のみのたわみ変形特性 を表す $T_{(i)}^{s}K_{ij}^{WT}T_{(i)}^{s}$ が最も大きな要因であり,これはWR 寸 法だけで計算できる。そして残りの項は,下ロール系に上 WR を合わせた等価 2Hi たわみ特性,上分割 BUR 変形特性, ロール間偏平変形特性を表すマトリクスであり,何れも WR 一本のたわみ剛性に比べればはるかに剛性の高いもの ばかりであるので式(14)中の Δq_i の係数マトリクス全体に 占める割合は小さい。

したがって、これらについては、例えば全体圧下で締め 込んだ時の剛性から対角項のみを近似的に求めて代入する ことでも Δq_i の係数マトリクスとしてはかなり良い近似値 が得られる。実際、このような係数マトリクスの近似値を 用いても実績としては5回程度の Δu_i の修正値出力で目標 零調荷重 q_i^0 がほぼ正確に実現でき、WR 水平たわみは 0.1mm 程度に抑えることができている。OPL の場合、分割 BUR 位置制御の制御周期は 30ms であるので、5回の修正 は 150ms で完了する。すなわち以上のような手法を用いる ことにより、手動調整では1時間かかっても実現できない ような高い精度の目標零調荷重設定が極めて短時間で実現 できている。

さて以上のようにして、キスロール締め込み状態で目標 零調荷重を実現した後、分割 BUR 個別圧下位置 u_i を零リ セットし、分割 BUR 荷重設定の僅かな誤差も解消するた め零調荷重 q_i^0 を分割 BUR 荷重 q_i の現在値で更新する。 その結果、式(6)より $u_i^{BT} = -U_i^0$ となり、式(10)より U_i^0 の値を計算することができ、分割 BUR 位置の零点調整手 続きが完了する。

3.2 上分割 BUR 変形特性の同定手法

ここでは式(6)で定義される上分割 BUR 変形マトリク ス K^{BT}の同定方法について考える。これは通常の圧延機の ミル剛性に相当するものであり,個別ロードセルと個別圧 下位置制御機構を有する分割 BUR 構成によってマトリク ス表現されたミル変形特性と解釈することができる。この 変形マトリクスは,通常のミル剛性の場合と同様に,分割 BUR 変形はもちろんのこと,軸受,ロードセル,キャリッジ, フレーム,ハウジング等の荷重を受ける部材の変形の総体 として決まるものであり,個々の部材の個性を反映してい るため,設計データから理論的かつ高精度に求めることは 不可能であり,基本的にキスロール締め込みテストを通じ て同定すべきものである。 知能圧延機プロトタイプミル³⁾の場合,キスロール締め 込み状態で各分割 BUR 圧下位置を個別に操作して分割 BUR 位置と分割 BUR 荷重を測定し,下 BUR と上下 WR を等価 2Hi ミル化することで,上 WR と接している上分割 BUR の負荷状態の絶対位置を求めて変形マトリクス K^{BT} を同定している³⁾。このようにプロトタイプミルの場合は, 下 BUR が両端支持梁でモデル化できる一体ロールであっ たため,下 BUR を基準として上分割 BUR の変形特性を同 定することができたが,OPL の場合は,下 BUR 系も上 BUR 系と同様に分割ロール形式を採用しており,その変形 特性が不明であるため,これを基準として上分割 BUR の 変形マトリクスを同定することは不可能である。

そこで次のように考えた。下分割 BUR の変形特性は未 知であるが、上分割 BUR 変形特性同定のためには上 WR のたわみが計算できればよい。上 WR の水平方向たわみは 式(3)、鉛直方向たわみは式(8)で計算できるが、式(8) 右辺における上下 WR 間荷重分布 *p_i* が未知である。*p_i* の値 は次式で与えられる下 WR との適合条件から決められる。

 $K_{ij}^{f} p_{j} = y_{i}^{WB} - y_{i}^{WT} + C_{i}^{WT} + C_{i}^{WB}$ (15) ここで K_{ij}^{f} は上下 WR 間ロール偏平変形マトリクス, C_{i}^{WB} は下 WR プロフィル, y_{i}^{WB} は下 WR たわみであり, 下 WR ~下分割 BUR 間に作用する荷重分布を r_{i} とするとき次式 で計算される。

$$y_{i}^{WB} = K_{ij}^{WB} \left(T_{(j)}^{y} r_{j} - p_{j} \right)$$
(16)

下 WR は下分割 BUR に接しているので,本来,式(16) においては下分割 BUR の変形に対応する剛体変位成分が 含まれているが,ここでは下分割 BUR 変形起因の剛体変 位成分も上分割 BUR 変形特性に含めると約束することで 式(16)において剛体変位成分を省略することにする。こ の約束は上分割 BUR のみで形状制御のみならず板厚制御 も実施する OPL 制御形態を考慮すると,むしろ必然である ことが理解される。

ここで,式(16)において*r_i*が既知であれば式(16)は通 常の4Hi ミルのBURのたわみ計算式と全く同じ形になっ ていることがわかる。そこで,上分割BUR変形特性同定 時の特別措置として,上分割BURと同様の個別ロードセ ルを有する分割BURを下分割BURとして組み込み,キス ロール締め込みテストを実施することにすれば*r_i*を実測す ることができる。この作業形態を前提とすれば,式(8), 式(16)のたわみ計算式と式(15)の適合条件式とから*p_i*を 消去し,式(9)で表される等価2Hi ミルの計算式を導くこ とができ,プロトタイプミルと同様の上分割BUR変形特 性同定手法を採用することが可能となる。

3.3 形状制御システム

3.3.1 OPL 形状制御の基本アルゴリズム

OPL 形状制御システムの主要アルゴリズムを図4に示す。まず上分割 BUR の個別圧下位置 u,および荷重の測定

図4 OPLの形状制御アルゴリズム Flatness control algorithm for OPL

値 q_i から予め同定しておいた分割 BUR 変形特性を用いて 分割 BUR 変位量を演算し分割 BUR の絶対位置 u_i^{BT} を式(6) によって算出する。次に式(10)で表される WR と分割 BUR との適合条件より上 WR たわみ u_i^{WT} を計算する。そ して上 WR たわみ計算値 u_i^{WT} と分割 BUR 荷重測定値 q_i と から圧延荷重分布の現在値 p_i を演算する。

具体的には,式(7)に式(3)および式(8)を代入すると, *p_iおよび c^v, d^v*に関する連立方程式が得られる。これを次 式で表される上 WR の鉛直方向の力およびモーメントの平 衡条件式を合わせて解くことで圧延荷重分布 *p_i*が求められ る。

$$I_{i}(p_{i} - T_{(i)}^{y}q_{i}) + F_{W}^{y} + F_{D}^{y} = 0$$
(17)

$$z_{i}\left(p_{i}-T_{(i)}^{y}q_{i}\right)+a\left(F_{W}^{y}+F_{D}^{y}\right)/2=0$$
(18)

ここで、 F_{W}^{y} , F_{D}^{y} はそれぞれ作業側 (WS) と駆動側 (DS) の鉛直方向 WR ベンディング力でインクリース側を正と定 義, *a* は WR の支点間距離, I_{i} は成分がすべて1のベクト ルである。

次に目標とする圧延荷重分布 $p_i^{\ c} \epsilon$ 実現するための分割 BUR 荷重分布目標値 $q_i^{\ c}$ の計算方法について詳述する。圧 延荷重分布目標値 $p_i^{\ c}$ は幅方向均一分布が基本であるが, 後述するように被矯正材の温度分布による熱ひずみ補償や 変形抵抗分布を考慮することで幅方向分布を持った値とな る。分割 BUR 荷重分布目標値 $q_i^{\ c}$ は、 $p_i^{\ c}$ と、これに対応 する上 WR 鉛直たわみ目標値 $y_i^{\ c} \epsilon$ 実現するように決める。 すなわち次式の上 WR 鉛直たわみ計算式が基本方程式と なる。

$$K_{ii}^{WT}T_{(i)}^{y}q_{i}^{G}-c^{y}z_{i}-d^{y}=-y_{i}^{G}+K_{ii}^{WT}p_{i}^{G}$$
(19)

上式は、式 (8) の上 WR たわみ計算式に $y_i^{WT} = y_i^G$, $p_i = p_i^G$, $q_i = q_i^G$ を代入して、未知数を含む項を左辺に移したもので ある。ここで、上 WR 鉛直たわみ目標値 y_i^G は、圧延荷重 分布現在値 p_i の演算過程で計算された上 WR 鉛直たわみ をベースとして、圧延荷重の現在値 p_i から目標値 p_i^G への 変化がロール変形におよぼす影響を考慮して決める。 分割 BUR 荷重分布目標値 q_i^Gは,式(19)に加えて以下 に示す上 WR の水平方向および鉛直方向の力およびモーメ ントの平衡条件式を満足しなければならない。

$$I_{i}T_{(i)}^{\ x}q_{i}^{\ G} = F_{W}^{\ x} + F_{D}^{\ x}$$
(20)

$$z_{i}T_{(i)}^{x}q_{i}^{G} = a\left(F_{W}^{x} - F_{D}^{x}\right)/2$$
(21)

$$I_{i}T_{(i)}^{y}q_{i}^{G} = I_{i}p_{i}^{G} + F_{W}^{y} + F_{D}^{y}$$
(22)

$$z_{i}T_{(i)}^{y}q_{i}^{G} = z_{i}p_{i}^{G} + a\left(F_{W}^{y} - F_{D}^{y}\right)/2$$
(23)

ここで、 $F_{W^{x}}$ 、 F_{D}^{x} は、それぞれ WS と DS の水平方向 WR ベンディング力で圧延方向の力を正と定義している。式(19) ~ (23)の方程式系を q_{i}^{G} および c^{y} 、 d^{y} について解くことに より分割 BUR 荷重分布目標値 q_{i}^{G} を求めることができる。

 $q_i^{\ G}$ が得られた後,分割 BUR 変形特性を用いて分割 BUR 変位量を計算し,上 WR 鉛直たわみ目標値 $y_i^{\ G}$ を実現 する目標分割 BUR 位置 $u_i^{\ G}$ そして分割 BUR 位置制御量 $\Delta u_i = u_i^{\ G} - u_i$ を演算する。この手続きは、零調作業において 式(14)を用いて所望の Δq_i を実現するための分割 BUR 位 置制御量 Δu_i を計算する手続きに類似である。そして最後 に制御ゲインを考慮して分割 BUR 位置制御を実施して形 状制御の1ループが完了し、以下この繰り返しとなる。

3.3.2 被矯正材のセンタリング精度の問題と解決策

OPL では冷却床から払い出された圧延板のセンタリング 精度が不十分でオフセンター量が先端から尾端にかけて 100~200mm 程度変化する斜行状態で板が進入してくるこ とがある。板長さは最大 63m にもなり,これをセンタリン グするためのサイドガイドを新たに設置するのはコスト的 に現実的でないと判断されたので,ここでは斜行状態のま ま矯正するシステムを構築した。すなわち OPL 入側におい て被矯正材の板幅とオフセンター量を常時測定し,これを トラッキングして OPL 圧延位置の板幅およびオフセンター 量を推定しつつ形状制御を実施する。具体的には第 3.3.1 項で説明した形状制御アルゴリズムの中で,板幅およびオ フセンター量の実測値を OPL ロールバイト位置にトラッキ ングした後,圧延荷重分布の現在値 p_i および目標値 p_i^cの 計算の際に考慮すればよい。

3.3.3 被矯正材の温度分布補償機能

OPL は冷却床出側に設置されており,長時間休止後の立ち上げ時を除いて,被矯正材は室温よりは高い温度で OPL に到達する。しかも冷却床の表面は,様々なサイズと温度の圧延板から熱を受けてきた履歴を有し,不均一な温度分布となっていることが多いため,これに接触してきた冷却床出側の被矯正材は一般に不均一な温度分布となっている。したがって OPL の形状制御システムでは,このような温度分布を有する被矯正材の形状矯正対策が必要となる。

特に幅方向に温度偏差を有する被矯正材を矯正する場 合, OPL で完全に形状フラットに矯正したとすると, その後, 被矯正材が常温まで冷却されると温度分布が均一になるの

- 29 -

で、OPL 矯正時点の温度分布による熱ひずみが解放される。 その結果、矯正時の不均一温度分布が残留応力に変化して 内在するか、または座屈して形状不良として顕在化するこ とになる。このような事態を避けるため、OPL 入側におい て被矯正材の温度分布を測定し、その温度分布に対応した 熱ひずみを OPL によって予め補償する形状制御システム を開発した。

被矯正材の線膨張係数をa,被矯正材の板幅をb,被矯 正材の存在する範囲を各分割 BUR に対応する幅方向要素 に分割した要素幅を Δz_i ($i=M_D$, ..., M_W),被矯正材の温度 分布を各要素幅で平均化した温度を T_i , とするとき,温度 T_R を基準とする被矯正材の熱ひずみの分布 $\Delta \varepsilon_i$ は次式で与 えられる。

 $\Delta \varepsilon_i = \alpha (T_i - T_R) = \alpha \cdot \Delta T_i$ (24) 被矯正材が室温にまで冷却され、外力零の状態で解放され るひずみは、幅方向の積分平均が零でなければならないの で、式 (24) において $T_p \in T_i$ の積分平均、すなわち

 $T_{R} = \Delta z_{i} T_{i} / b$ (25) としたものになる。したがって式 (24) のひずみ (以下では 平均値からの差分という意味で伸びひずみ差と呼称する) が解放されて形状フラットとなるためには OPL 矯正時に式 (24) と同じ伸びひずみ差を与えておけばよいことがわか る。

式 (19) で表現したように OPL では所望の圧延荷重分布 $p_i^{\ G} を実現することを通じて形状制御を行う。したがって上$ 記のように形状フラットではなく式 (24) で表現される伸び $ひずみ差 <math>\Delta \varepsilon_i$ を与えることを目的とする場合,その伸びひ ずみ差に対応する圧延荷重分布を目標値として与えてやれ ばよい。

二次元圧延理論によると、圧延張力の影響を考慮した圧 延荷重 P_iは圧下率の小さい条件では次式のような簡易式 で計算される¹⁰⁾。

 $P_i = Q_p \ell_d [k_i - \{\delta \sigma_{fi} + (1 - \delta) \sigma_{bi}\}]$ (26) ここで, Q_p は圧下力関数, ℓ_d は投影接触弧長, k_i は平均変 形抵抗, σ_{fi} は出側張力, σ_{bi} は入側張力, δ は張力影響の配 分を決めるパラメータである。

また伸びひずみ差は張力のフィードバック効果を通じて 次式で張力分布と対応づけられる⁷⁾。

 $\sigma_{fi} = \sigma_{bi} = -E\Delta\varepsilon_i$ (27) ここで, *E* は圧延材のヤング率であり, 平均張力は零としている。式 (27)を式 (26)に代入し,式 (24)を考慮すると次式を得る。

 $p_i = Q_p \ell_d [k_i + Ea\Delta T_i]$ (28) 式 (28) で与えられる p_i を式 (19) で利用する圧延荷重分布 目標値 $p_i^{\ G}$ として採用することで OPL 矯正以降の冷却で発 生する熱ひずみを予め補償することが可能となる。

さて式 (28) で被矯正材の温度分布影響を考えるとき, 温度が平均変形抵抗 k_iに与える影響も考慮するべきであ る。温間圧延であっても温度が変形抵抗に与える影響があ ることは OPL 自身の圧延荷重実績からも確認することがで き、OPL の圧延温度範囲では温度影響はほぼ線形関係で 近似できることがわかった。すなわち、室温 T_r に対応する 変形抵抗を k_r とするとき、任意の温度 T_i に対する変形抵 抗 k_i は影響係数を β として次式で表される。

 $k_i = k_r - \beta (T_i - T_r)$ (29) したがって、被矯正材の平均温度 T_R に対する変形抵抗 k_R は

$$k_p = k_r - \beta \left(T_p - T_r \right) \tag{30}$$

で計算され、 $T_R を基準とする温度分布 \Delta T_i = T_i - T_R$ に対応 する変形抵抗分布 k_i は式 (29), (30) から k_i を消去して次式 で計算される。

$$k_i = k_R - \beta \cdot \Delta T_i \tag{31}$$

式(31)を式(28)に代入すると次式を得る。

$$p_{i} = Q_{P} \ell_{d} \left[k_{R} + E \left(\alpha - \frac{\beta}{E} \right) \Delta T_{i} \right] = Q_{P} \ell_{d} \left[k_{R} + E \overline{\alpha} \Delta T_{i} \right]$$
(32)

ここで、 $\bar{\alpha}=\alpha-\beta/E$ であり、これは温度が変形抵抗におよ ぼす影響も考慮した線膨張係数と見なすことができる。

例えば、板厚 20mm で降伏応力 350MPa の厚鋼板の場合, α =1.30×10⁻⁵/K に対して、OPL の圧延荷重実績から β/E = 0.45×10⁻⁵/K であったので、 $\overline{\alpha}$ =0.85×10⁻⁵/K となる。つま り変形抵抗におよぼす温度の影響が熱ひずみ補償項を緩和 させる効果を有することがわかる。

以上のことから,被矯正材の温度分布をOPLの入側で 測定し,そのデータを時々刻々OPL位置にトラッキングし て圧延中の幅方向温度分布に対して式(32)を用いて目標 圧延荷重分布を計算して制御に用いることにより,幅方向 の温度分布,そしてその長手方向変化の影響をも補償する ことが可能となる。

4. リアルタイム形状制御技術の実用化

以上説明してきた OPL の設定,制御に関する開発技術 を実装した。圧延中は,OPL 入側において常時,被矯正材 の温度分布そして板幅およびオフセンター量を測定し, ロールバイト位置までトラッキングして制御入力とする。 OPL では,常時,分割 BUR 位置および分割 BUR 荷重を 測定して図4に示した形状制御アルゴリズムにしたがって 制御周期 30ms で分割 BUR 位置制御を実行する。

図5には板厚12mm,板幅5200mmの厚鋼板を矯正した際の分割BUR荷重分布と圧延荷重分布推定値の実績値をそれぞれ被矯正材の先端から0.5m,3.0m,5.4m,7.6m,10.0m,12.4mの位置で示している。OPLによる圧延矯正は被矯正材の板厚分布に沿ってWRを曲げ,幅方向に原則均等圧下を与えることにより成立するので,分割BUR荷重分布は、WR各位置に必要とされる曲げモーメントを与えるため、図5(a)に示すように一般に不均一な分布となる。一方,圧延荷重分布は図5(b)に示すように幅方向にほぼ

A result of control of roll force distribution (12 mm thickness \times 5200 mm width)

均一に制御される。このような結果から,例えば,測定値 である分割 BUR 荷重を直接観察しながらオペレータが手 動で分割 BUR 位置を調整するような作業形態をとること は不可能であり,これまで示したような自動制御理論およ びロジックが OPL には不可欠であることが理解される。

ところで図5(b)に示す 0.5m 位置の圧延荷重分布におい て圧延ライン駆動側(DS)の No.1分割 BUR に対応する 圧延荷重が零になっているが,これは,第3.3.2項で述べ たように,冷却床で払い出された被矯正材が斜行して OPL に進入してきており,先端部では No.1分割 BUR の下にな かったものが,3.0m までには No.1分割 BUR の下に板端 部が入ってきていることを表している。このように被矯正 材が斜行して板端部が分割 BUR の境界を横切るような状 況となっても形状制御は正常に動作していることが確認で きる。

図6には当該材のオフセンター量の推移と、対応する鉛 直方向 WR ベンディング力と水平方向 WR ベンディング力 の推移を示している。オフセンター量の定義は圧延ライン 作業側 (WS)を正としており、図6より先端部は WS、尾 端部は DS へと約 100mm 斜行していることがわかる。ま たこれに対応して特に鉛直ベンディング力は WS と DS と で逆方向の変化を示しており、分割 BUR による形状制御 を正常に補完していることがわかる。このようにすべての 分割 BUR の位置に被矯正材が存在する状況となる広幅材 の場合は WR ベンダーを形状制御に活用することになる。 この場合,式 (19)の条件式が 19 個存在し式 (20) ~ (23) の条件式を合わせて 23 個の条件式が存在するので、分割 BUR 荷重 q_i^{G} の他、鉛直方向および水平方向 WR ベンディ ング力 F_{W}^{*} , F_{D}^{*} , F_{D}^{*} を未知数として式 (19) ~ (23)

図6 オフセンター量と WR ベンディング力の実績 Plate off-center and corresponding WR bender behavior (12 mm thickness × 5200 mm width)

図7 条切りサンプルの切り出し方法 Sampling description for residual stress measurement

の方程式系を解くことができて WR ベンダーの制御出力も 併せて求めることができる。

第3.3.3 項で示した被矯正材の温度分布補償機能の効果 を調査するため、OPL 矯正後、常温に冷却された板厚 21.5mm、板幅2550mm、降伏応力350MPaの厚鋼板に対 して、図7に示すように尾端部近傍を長さ10mに切断した 後、板端部300mmを除いて、①、③が300mm幅、②、 ④が150mm幅の4条の条切りサンプルを切り出し、それ ぞれのキャンバーを測定した。ここで300mm幅と150mm 幅の条を交互に切り出しているのは、OPLの分割BURが 295mmピッチで配備されているため、分割BUR ピッチに 依存しないデータを得る意図に基づくものである。またこ

-31 -

図8 条切り後キャンバーの測定結果 Cambers measured after slitting out samples

の条切りは幅方向に並んだ複数のガストーチで4条のサン プルを一気に切断する方式であり、切断時に不均一に熱ひ ずみが入る可能性は極めて小さいことを予め確認してい る。

条切りキャンバー測定結果を図8に示す。温度分布補償 機能を使用しなかった図8(a)では10m 長さあたり10mm 前後のキャンバーが測定されたが,温度分布補償機能を使 用して形状制御した図8(b)では最大で4mmのキャンバー となっており,温度分布補償機能が効果を発揮していると 判断される。条切りキャンバーの発生原因は切断前の大板 状態で存在する長手方向残留応力の幅方向分布と考えら れ,条切りキャンバーが大幅に小さくなっていることは、 矯正後の大板状態で残留応力が低減していることを意味し ている。

また図9には OPL による平坦度改善効果の一例を示して いる。図9は長手方向に板厚変化のある LP (Longitudinally Profiled) 鋼板を OPL 出側に位置する形状計で測定した結 果を鳥瞰図で示している。

図9の上図は OPL 矯正を実施しなかった LP 鋼板の形状 を示している。LP 鋼板は板厚変化に起因して冷却床出側 の形状が良くないものが多く,また板厚差が存在するため, これをコールドレベラーで矯正することも容易ではない。 一方,OPL では矯正が WR の直下の長手方向1点で実施 されるため,ローラーレベラーの場合のように加工度が板 厚変化によって変動する問題もなく,LP 鋼板の板厚変化 に沿って形状矯正することができる。その結果,図9下図 に示すように LP 鋼板の場合も良好な形状矯正を実施する

図9 LP 鋼板に対する形状制御結果の例 Leveling performance for longitudinally profiled plate

ことができている。

5. 圧延理論から見た知能圧延機開発研究の意義 と今後の課題

知能圧延機の開発研究は前章までに記した OPL の実用 化で一段落したが、ここに至るまでの一連の知能圧延機開 発研究の意義を特に形状制御に関する圧延理論の観点から 整理しておく。

5.1 形状制御理論から見た知能圧延機開発研究の意義 5.1.1 入側形状の影響

冷間圧延において入側形状が出側形状に大きな影響をお よぼさないことはラボ実験によって確認されていた¹¹¹が, 入側形状が圧延荷重分布にも影響をおよぼさないことにつ いては形状制御理論における重要な仮説となっていた⁷⁰。 この仮説を知能圧延機特有の圧延荷重分布検知機能によっ て初めて検証することができた。

具体的データを図10に示す。これはWR 直径 80mm, 7分割 BUR の知能圧延機パイロットミルで,板厚 1mm, 板幅 380mm の耳波,フラット,中波形状の軟鋼板を,分 割 BUR 位置を固定した状態で圧下率 2%で圧延して,分 割 BUR 荷重分布および圧延後の板形状を測定したもので ある。図より入側形状にかかわらず出側形状および分割 BUR 荷重はほぼ同じ分布を示していることが確認できる²。 分割 BUR 位置および分割 BUR 荷重分布が同じであると いうことは,本論文第 3.3.1 項で述べた圧延荷重分布演算 方法からわかるように,圧延荷重分布が同じであることを 示しており,この結果より,入側形状はロールバイト内の 力学的状態に影響を与えていないことが理解できる。

この原理により知能圧延機では入側形状を測定すること なく所望の出側形状を得ることができているのである。す なわち圧延材の変形抵抗が板幅方向に均一であれば,幅方 向均一な圧延荷重分布を目標として制御することで入側形 状にかかわらず出側形状フラットが得られる。

5.1.2 圧下率(伸び率)と入側形状の関係

入側形状として鋼板に存在する伸びひずみ差を圧延に よって解消して形状矯正するには、常識的には、入側形状 として鋼板に存在する伸びひずみ差よりも大きな伸び率す なわち圧下率を与える必要があると推測されるが、知能圧 延機の実験結果によって、入側形状に対応する伸びひずみ 差よりも小さい伸び率でも形状矯正が可能であることが確 認された。

図 11 には WR 直径 200 mm, 7分割 BUR の知能圧延機 プロトタイプミルによって,板厚 8.9 mm,板幅 1635 mmの 鋼板を伸び率 0.2%で圧延した際の入側急峻度と出側急峻 度を示している。図から急峻度で 5%を超える著しい形状 不良を有する鋼板を僅かな伸び率で圧延することで急峻度 約 0.3%のほぼフラットな形状が得られている³⁾。このとき の入側形状にはうねり(全波)成分も含まれているので, これを除いて正味の伸びひずみ差を算出すると約 0.4%で あった。つまり入側形状に対応する伸びひずみ差の約 1/2 の伸び率で圧延することにより良好な形状矯正が実現でき

図 11 NIM プロトタイプミルにおける形状矯正実績³⁾ Flatness of a rolled plate before rolling and after rolling rolled by NIM prototype mill³⁾

ていることになる。またこのときの知能圧延機の分割 BUR 位置条件は,同サイズの入側形状フラットな鋼板を出側形 状フラットに圧延する条件と全く同じであった。この実験 結果は,入側形状が出側形状および圧延荷重に影響をおよ ぼさないという原理が,極めて小さい伸び率の圧延でも成 立することを示している。

板幅 1000mm 以上の鋼板を圧延する従来の商用圧延機 では、入側板厚分布に対してメカニカル板クラウンを高精 度で相似形状に制御することが困難であるので、伸び率 0.2%以下の極軽圧下圧延を安定的に実現することは一般 に困難である。これは圧下量が小さいと入側板厚分布と圧 延時のロールギャップ分布すなわちメカニカル板クラウン との不整合の幅方向分布が相対的に大きく、圧下量が小さ くなる幅方向位置の圧延材が塑性変形しなくなるため、全 体として伸び率が出ず圧延が成立しないためである。した がって圧延荷重分布の検知・制御機能を有する知能圧延機 特有の機能によって、初めてこのような極軽圧下圧延でも 入側形状が出側形状に影響をおよぼさないことを確認する ことができたと言うことができる。

このことは知能圧延機による形状矯正技術が, ローラー レベラーによる形状矯正に比べて, 特に高張力鋼板の形状 矯正で有利になることを示唆している。すなわちローラー レベラーの場合, 塑性変形領域を板厚方向に一定割合以上 にするため被矯正材表面には降伏ひずみの3~5倍のひず みを与える必要があり, 高張力鋼板では降伏ひずみが大き くなるため矯正による材質劣化が著しくなる。一方, 知能 圧延機の場合は被矯正材の降伏ひずみとは関係なく極軽圧 下圧延で矯正できるため矯正による材質劣化は小さくなる。

5.1.3 張力のフィードバック効果の定量的証明

知能圧延機では圧延中の圧延荷重分布をリアルタイムに 直接制御することができるので,出側形状と圧延荷重との 対応を確認することも可能である。圧延荷重分布の変化と 出側形状の変化は式(27)で示した張力のフィードバック 効果の考え方を利用して演算しているが,この方法で正確 に出側形状を制御できることが,本論文第3.3.3 項で述べ た温度分布補償機能を含め,多くの圧延実績で確認されて いる。すなわち張力のフィードバック効果という仮説が定 量的にも正しいことが知能圧延機の開発研究を通じて証明 されたと考えている。

5.2 形状制御理論に関する今後の課題

上記したように知能圧延機開発研究によって,入側形状 が出側形状および圧延荷重分布に影響をおよぼさないこ と,そしてこのことが入側形状に対応する伸びひずみ差よ りもはるかに小さい伸び率の圧延でも成立することが確認 された。このことは入側形状として鋼板に存在する伸びひ ずみ差がロールバイト入口でほぼ完全に解消され,ロール バイト内部の力学的状態に一切影響を与えないことを意味 していると考えられる。

この結論は、知能圧延機の圧延実績による状況証拠から 導出されたものであるが、この現象を圧延の基本メカニズ ムとして直接的に証明することは今後の圧延理論研究の重 要な課題と考える。

6. 結 言

圧延機自身による形状検出・制御機能を有する新型式知 能圧延機を実機厚板矯正機(OPL)として実用化するため の操業ソフトウェアおよび形状制御技術を開発し実装した 結果,冷却床から斜行状態で進入してくる厚鋼板,温度分 布を有する厚鋼板,さらには長手方向板厚変化のあるLP 鋼板をも良好に形状矯正可能な技術を実用化することがで きた。

また一連の知能圧延機開発研究によってもたらされた形 状制御理論の進歩と今後の課題についても整理した。

参照文献

- 1) 鈴木弘: 塑性と加工. 20 (217), 83 (1979)
- 2) 小川茂 ほか: 塑性と加工. 52 (609), 1094 (2011)
- 3) 小川茂 ほか: 塑性と加工. 52 (609), 1099 (2011)
- 4) 小川茂 ほか:日本鉄鋼協会 第 131 回圧延理論部会資料. 圧 理 131-14, (2009)
- 5) 小川茂 ほか:鉄と鋼. 100 (12), 1490 (2014)
- 6) 鈴木弘: 塑性と加工. 23 (263), 1123 (1982)
- 7) 松本紘美 ほか: 塑性と加工. 23 (263), 1201 (1982)
- 8) 日本塑性加工学会編:塑性加工便覧. 東京, コロナ社, 2006, p.21
- 9) 戸澤康寿 ほか: 塑性と加工. 11 (108), 29 (1970)
- 日本鉄鋼協会圧延理論部会編:板圧延の理論と実際.東京, 日本鉄鋼協会, 1984, p.36
- 11) 中島浩衛 他:鉄と鋼. 59 (2), A33 (1973)

小川 茂 Shigeru OGAWA 技術開発本部 顧問 工博 千葉県富津市新富20-1 〒293-8511

山田健二 Kenji YAMADA プロセス研究所 一貫プロセス研究部 上席主幹研究員

大塚貴之 Takayuki OTSUKA プロセス研究所 一貫プロセス研究部 主幹研究員 Ph.D.

井上 剛 Tsuyoshi INOUE プロセス研究所 圧延研究部 上席主幹研究員

若月邦彦 Kunihiko WAKATSUKI 日鉄住金総研(株) 調査研究事業部 鉄鋼技術部 研究主幹

空尾謙嗣 Kenji SORAO 技術開発本部 人事室 主幹

竹下幸一郎 Koichiro TAKESHITA 大分製鉄所 設備部 中央整備室長

池田佳士郎 Keishiro IKEDA 大分製鉄所 厚板部 厚板技術室 主幹

中川大輔 Daisuke NAKAGAWA 大分製鉄所 厚板部 厚板課長