優れた耐食性を実現した新耐食鋼(ARU-TEN®)の開発と実用化

Development and Application of the New Low Alloy Steel (ARU-TENTM) Exhibiting Good Corrosion Resistance

長 澤 慎*	斎 藤 直 樹	都 築 岳 史
<i>Makoto NAGASAWA</i>	<i>Naoki SAITOH</i>	Takeshi TSUZUKI
奥 島 基 裕	金 子 道 郎	田 中 睦 人
Motohiro OKUSHIMA	<i>Michio KANEKO</i>	Mutsuto TANAKA

抄 録

高塩害環境中においてステンレス鋼に近い優れた耐食性を有する ARU-TEN[®]を開発,実用化した。 ARU-TEN は、無機 Zn リッチプライマ劣化後の亜鉛系腐食生成物による弱アルカリ化と Cr や AI などの 合金元素添加によって、鋼板表面を不動態化させることで優れた耐食性を発揮する。高価なレアメタルの 添加量をミニマム化しているため比較的安価で、優れた耐食性を有する地球環境に優しい低合金鋼であ り、特に耐食性を要求される沿岸地域で適用されている。さらに、腐食環境が比較的マイルドな屋内環境 では無塗装で優れた耐赤さび性を有し、精密機械等の用途が期待されている。

Abstract

We developed new corrosion resistant steel (ARU-TENTM) that exhibits good corrosion resistance closer to that of stainless steels in high chloride environments. Corrosion resistance of ARU-TEN steel is derived from a combination of inorganic zinc primer coating and the addition of Cr and Al etc. to the steel. It results in passivation of the steel surface due to a weak alkaline environment by corrosion products of the inorganic zinc primer and alloying elements added. ARU-TEN is an environment-friendly low alloy steel that minimizes the amount of rare-metal alloy addition and the application of ARU-TEN is gradually expanding for steel making plants in seashore areas. In addition, ARU-TEN shows good anti-rust resistance in mild corrosion environments such as indoor environments without the inorganic zinc primer and it is expected to be used as precision instruments in indoor environments.

1. 緒 言

近年の世界規模での急激な経済発展に伴い, Pt, Pd, Cr, Niなどのレアメタルの資源の枯渇, 偏在化による経済 リスクが問題視されており, 合金元素の有効活用や代替技 術の開発などが進められている¹⁻³。

鉄鋼材料では Cr, Ni, Sb, W などのレアメタルは高耐 食化を目的に鋼材に添加される。例えば, Cr 添加量 11% 以上を含有し, 鋼表面に不動態皮膜を形成させることで 広範囲な腐食環境で使用可能なステンレス鋼があげられ る。また, 低合金耐食鋼では, Cr, Ni, Cu, Pを含有した 橋梁などに使用される耐候性鋼^{4,5)}, Sb, Cu 等を含有した 火力発電所の排ガス処理設備などの酸性環境で使用される S-TEN^{®6)}などがあげられ, 腐食環境を限定することによっ て, 少量の合金添加量にも関わらず優れた耐食性を発揮す る。しかしながら、高塩害環境では、優れた耐食性を発現 する低合金耐食鋼は存在せず、ステンレス鋼が主体となる。

筆者らは、合金元素添加のみでなく、合金元素と表面処 理との組み合わせに着目し、Cr,Niなどのレアメタルを大幅 に低減させ、かつステンレス鋼に近い優れた耐食性を発現す る新しいコンセプトの低合金耐食鋼の基礎検討に着手した。

亜鉛めっき鋼板は,犠牲防食作用だけでなく,亜鉛めっ き劣化後の亜鉛系腐食生成物が防食効果を有する報告が 数多くある⁷⁾。また,亜鉛めっきを塗布したステンレス鋼 では,犠牲防食作用に加え,亜鉛腐食生成物のバリア効果 により優れた耐食性を発揮することが報告されている⁸⁾。

そこで、各種合金元素と亜鉛系腐食生成物との組み合わ せによる耐食性向上を検討した。その結果、造船、船舶等 の厚鋼板の1次防錆に使用される無機 Zn リッチプライマ と Cr、Al 添加量を最適化させることで、レアメタル添加

^{*} 鉄鋼研究所 厚板・形鋼研究部 主任研究員 千葉県富津市新富 20-1 〒 293-8511

量をステンレス鋼の約1/4に低減し、ステンレス鋼に近い 耐食性を発揮可能な経済的な低合金鋼, ARU-TEN® (Anti-Rust)の開発に成功した。高塩害環境で優れた耐食性を要 求される化学プラントや製鉄所など沿岸地域の工場設備へ の適用を進めている。

また、本鋼は、数%程度のCr, Alを含有しており、屋 内環境のような塩化物濃度の低い比較的マイルドな腐食環 境では、無塗装でも耐赤さび性を向上させることができる ため、屋内精密機器への適用が期待できる。

本稿では、ARU-TEN の各種環境下での耐食性、その発 現機構と共に機械特性、適用事例について述べる。

2. ARU-TENの高塩害環境下での耐食性

2.1 実験方法

ARU-TEN の化学成分例を表1に示す。比較材には, 普 通鋼, 5%Cr 鋼, SUS304 を用いた。試験片には 60 又は 70 × 150 × 3 mm 厚を準備し、表面仕上げは無塗装(機械研 削仕上げ)および無機 Zn リッチプライマ塗布材とした。 後者はスチールブラスト後, 15µm 狙いで無機 Zn リッチプ ライマを試験片表面に塗布し,試験片下部に塗膜欠陥を模 擬するためスクライブを入れ, 裏面, 端面をシール塗装し たものを腐食試験片とした。高塩害環境下を想定した腐食 試験は人工海水による乾湿繰り返し試験(以下, CCT 試験 と記す)にて実施した。試験条件は(1)人工海水噴霧(35℃ ×4h), (2) 乾燥工程 (60℃, 10-15%RH×2h), (3) 湿潤 工程(50℃, RH>95%×2h)を1サイクルとし, 最大150 サイクル実施した。なお、CCT 試験では、加速評価を目的 とし、造船などに使用される亜鉛含有量の少ない無機 Zn リッチプライマ(加熱残分の亜鉛含有量 55%程度)を使用 した。

2.2 実験結果および考察

2.2.1 耐食性評価結果

図1,2に無塗装および無機Znリッチプライマ塗布材の 腐食試験後外観を示す。無塗装では、ARU-TEN は普通鋼、 5%Cr鋼同様に全面腐食の様相を示した。一方,無機Znリッ チプライマ塗布材では普通鋼は全面赤さび発生,5%Cr鋼 はスクライブ付近で赤さびの発生が認められたが、ARU-TEN ではほとんど赤さび発生が認められず, SUS304 に近 い著しい赤さび抑制を示した。図3に各種鋼材の無機 Zn リッチプライマ塗布材の最大腐食深さを示す。ARU-TEN は普通鋼の約1/10.5%Cr 鋼の約1/5と、著しい抑制が 認められた。以上の結果から、CCT 試験において ARU-

表1 ARU-TEN の化学成分例 (mass%) Example of chemical compositions of ARU-TEN (mass%)

С	Si	Mn	Р	S	Cr	Others
0.02	0.26	2.61	0.007	0.001	5.99	Al, Cu, Ni

10mm

図1 無塗装仕様の人工海水 CCT 試験後外観⁹ (90 サイクル後)

Appearance of samples (bare surface) after corrosion test for 90 cycles

無機 Zn プライマ塗布材の人工海水 CCT 試験後外観⁹

図2 (150 サイクル後) Appearance of Zn-primer painted samples after corrosion

test for 150 cycles

図3 人工海水 CCT 試験後の各種鋼材の最大局部深さ⁹⁾ Maximum corrosion depth of samples after corrosion test for 150 cycles

TEN は無機 Zn リッチプライマを塗布することで、SUS304 に迫る耐食性を有することがわかる。

2.2.2 ARU-TEN の耐食性の発現機構

図4は腐食試験後、鋼板表面で白さびが発生した箇所 を pH 試験紙で測定した一例である。 pH9~10 程度の弱 アルカリ性を示す。この弱アルカリ性が無機 Zn リッチプ ライマ塗布した ARU-TEN の著しい赤さび抑制に影響して

いるものと考え, 弱アルカリ性に調整した人工海水を用い, 脱気した静止溶液中にてアノード分極を実施した。図5に pH9.2 に調整した 2/3 濃度の人工海水中でのアノード分 極測定結果を示す。普通鋼は活性溶解挙動, 5%Cr 鋼はわ ずかに不動態化を示し活性溶解へと移行するのに対して, ARU-TEN は電位の上昇に伴い,電流密度が増大しない不

図4 白さび部の pH 測定結果 Measurement result of pH on Zn-primer painted corrosion product after CCT

図5 各種鋼材の塩化物を含む pH9.2 のアノード分極測定 結果

Anodic polarization curves of mild steel, 5%Cr and ARU-TEN in mixed solution of artificial sea water and standard buffer solution, with its pH 9.2 動態を示した。この傾向は、CCT 試験と合致している。す なわち、ARU-TEN の無機 Zn リッチプライマ塗布による耐 赤さび性の著しい向上理由は、亜鉛系腐食生成物によるバ リア効果ではなく、弱アルカリ性を示す亜鉛系腐食生成物 と鋼材成分の組み合わせに伴う、不動態化によると考えら れる¹⁰。

図6に典型的な無機 Zn リッチプライマ塗布後の初期断面を示す。図7に無機 Zn リッチプライマ塗布した ARU-TEN の CCT 試験後の白さび部の光学顕微鏡観察結果を示す(25µm 狙い,橋梁で使用される亜鉛含有量が多い無機 Zn リッチプライマ(加熱残分の亜鉛含有量 80%程度)を 塗布した ARU-TEN, 12 か月 CCT 試験後)。初期は平均 10µm 以下の金属 Zn 粒子が認められるが, CCT 試験後で は金属亜鉛粒子はほとんど残存しておらず,亜鉛系腐食生 成物層でおおわれており,地鉄の腐食は認められない。腐 食生成物層内では, Zn, O, Mg の分布が認められる(図8)。 すなわち,乾湿繰り返し過程において Mg を含む亜鉛系腐

図6 無機 Zn リッチプライマ塗布材の断面観察例(初期) Example of optical microphotographs of cross-section of Zn-primer painted samples (before test)

図7 人工海水 CCT 試験後の白さび部の断面観察結果 Optical microphotographs of cross-section of rust layer on Zn-primer painted samples after CCT

図8 人工海水 CCT 試験後の断面 Electron Probe Micro Analyzer (EPMA) 元素マッピング EPMA analysis results of cross-section of rust layer on Zn-primer painted steel for after CCT

10mm

図9 純水環境下での結露試験後外観

Appearance of samples (bare surface) after condensation corrosion test for 300 \mbox{h}

食生成物層が形成され,その結果,地鉄界面が弱アルカリ 化すると考えられる。

ARU-TENの低塩害環境下(屋内環境)での耐 食性

高塩害環境下では、ARU-TEN は無機 Zn リッチプライ マを塗布することで優れた耐食性を発揮する。一方、昼夜 の結露に伴う、濡れ乾きだけの塩化物濃度の低い比較的マ イルドな腐食環境では、無塗装でも耐赤さび性の向上が期 待できると考え、単純結露環境での ARU-TEN の無塗装耐 食性を検討した。

供試材には、75×75×2.5 mm 厚の普通鋼, ARU-TEN, SUS304を用い、ヘアライン研削仕上げ後, 脱脂, 洗浄し, 腐食試験片とした。恒温水槽上の気相部に試験片を設置し, 水槽内の純水を80℃で加温して試験片表面を常時水結露 させる環境で腐食試験を300時間実施した。図9に300時 間腐食試験後の試験片の外観写真を示す。普通鋼では赤さ びの発生が認められるが, ARU-TEN は巨視的判別が困難 な微小な点さびのみであった。従って, ARU-TEN は屋内 の塩化物濃度が低い単純結露環境では、SUS304 に近い耐 赤さび性を有することがわかる。

4. ARU-TENの母材および溶接部の諸特性について

4.1 母材特性

4.1.1 製造法

次に, 実ラインで製造された ARU-TEN の特性について 述べる。供試鋼は, 通常の転炉および二次精錬設備で溶製 され, 連続鋳造設備により鋳造された鋳片を用いて, 連続 熱間圧延あるいは厚板製造ラインにより板厚 4.5 ~ 25mm 鋼板として製造された。

4.1.2 機械的特性

表2に母材機械的性質を示す。ARU-TEN の母材強度は 490 MPa 級であり、0℃におけるシャルピー吸収エネルギー も 200 J 以上の高い値を示す。

4.2 溶接部特性

4.2.1 溶接性

表3に板厚 25 mm 材を用い JIS Z 3158 により実施された y 型溶接割れ試験条件を,表4に得られた結果を示す。な お,溶接材料には耐食性を考慮して,SUS309 系を用いて いる。0℃においても低温割れは認められず,ARU-TEN は 良好な溶接性を有している。

4.2.2 溶接継手特性

板厚 12mm および 25mm 鋼板を用い,溶接継手部の機 械的性質について調査した。表5に用いた溶接条件を,図

Diata		Tensile	Impact property			
thickness	Specimen	Yield	Tensile	Florention	Specimen	νF
(mm)	type	strength	strength	(%)	type	vL _{0℃}
(11111)	(mm) type		(N/mm^2)	(70)	type	(3)
4.5	JIS 5	488	620	29	-	-
9	JIS 5	437	686	27	-	-
12	JIS 1A	409	659	21	IIS V	204
25	JIS 1A	390	636	21	J15 V	215

表2 母材の機械的特性 Mechanical properties of base plates

表3 y 型溶接割れ試験条件 Welding condition of y-groove weld cracking test

Plate thickness (mm)	Welding material	Current (A)	Voltage (V)	Speed (cpm)	Heat input (kJ/mm)
25	JIS Z 3323 YF309LC type	170	26	15	1.8

表4 y 型割れ試験結果 Test results of y-groove weld cracking test

Condition			Cracking rate (%)							
Temperature	Humidity	Surface			Cross section			n Root		
(°C)	(%)	1	2	Ave.	1	2	Ave.	1	2	Ave.
20	60	0	0	0	0	0	0	0	0	0
0	_	0	0	0	0	0	0	0	0	0

表5 溶接条件 Welding condition

Plata thickness Welding	Walding	Walding	Shield gas	Number of	Welding condition				
(mm)	method	motorial		Shield gas	Shield gas		Current	Voltage	Speed
(mm) method	material		passes	(A)	(V)	(cpm)	(kJ/mm)		
12	Elux aarad ara	JIS Z 3323	A = +	5	210	27	26	1.3	
25 Flux cored arc welding	$(1.2 \text{mm}\phi)$		BP: 5	210	26	25	1.3		
	weiding	TS309L	20%CO ₂	FP: 5	220	27	25	1.4	

図 10 開先形状 Groove shape

表6	継手引	張試	験紀	課
Test re	esults c	of tens	sile	test

図 11 継手シャルピー試験結果 Test results of Charpy impact test

10に開先形状を示す。ワイヤー径 1.2mm の 309 系溶接 材料を用いて, FCAW にて板厚 12mm および 25mm 鋼板 に突合せ溶接を実施した。なお, 溶接入熱は 1.3 ~ 1.4kJ/ mm, 溶接予熱および後熱は実施していない。

表6に得られた継手引張試験結果を示す。いずれの ARU-TEN 鋼板においても母材の引張強さに近い600MPa 以上の強度で破断している。

図11に溶接金属, Fusion Line(FL), それより1mm(HAZ1) および3mm (HAZ3)離れた箇所に切欠を入れて実施され た継手シャルピー試験結果を示す。いずれの鋼板において も0℃で27J以上の吸収エネルギーを示している。

図 12 に板厚 25mm 材における継手部の断面硬さ分布を 測定した結果を示す。FL 部においてやや硬化が, HAZ 部 ではやや軟化が見られるが, その程度は大きくない。

4.3 その他の特性

4.3.1 切断性および切削性

ARU-TEN を切断する場合は、プラズマあるいはレー ザー切断を用いることが望ましい。一方、ARU-TEN は炭

図 12 継手断面硬さ分布(25mm) Hardness distribution of welded joint

図 13 ドリル摩耗に及ぼす材料の影響 Influence of materials on outer corner wear of drill tip

表7 ARU-TEN の物理的性質 Physical properties of ARU-TEN

Physical properties	(20°C)	SS400	SUS304	ARU-TEN
Elastic modulus	GPa	206	194	206
Co-efficient of thermal expansion	10 ⁻⁶ /°C	12	17	13
Thermal conductivity	W/m/K	58	16	22*
Specific heat	J/g/K	0.46	0.5	0.45
Electrical conductivity	$\mu\Omega\cdot cm$	16	72	72
Magnetism		Magnetic	Nonmagnetic	Magnetic
Co-efficient of thermal expansion Thermal conductivity Specific heat Electrical conductivity Magnetism	10^{-6} °C W/m/K J/g/K $\mu\Omega \cdot cm$	12 58 0.46 16 Magnetic	17 16 0.5 72 Nonmagnetic	13 22 ** 0.45 72 Magnetic

ж 20-300°С

素鋼に近い機械加工性を有しており、磁石による固定も できることから、SUS304に対して工具寿命、切削速度お よび加工精度が優れている特長を有する(図13)。さらに SUS304の加工性を改善したSUS303に対しても同等以上 の加工性を確認している。

4.3.2 物理的特性

表7に ARU-TEN の物理的性質を SS400 および SUS304 と比較して示す。熱伝導率および電気抵抗は SUS304 に近 く, それ以外は概ね SS400 に近い性質を示す。

5. ARU-TENの規格

ARU-TENの設定規格を表8,表9に記載する。化学成

分については、Cr、Al 添加で耐食性を向上させ、C を低め にして Cr 炭化物の析出を抑制している。Mn は継手靭性な どを考慮し設定した。

板厚は 6mm から 25mm を標準とするが, 下限は 2.3mm, 上限は 50mm まで製造可能である。鋼材の種類としては, ARU-TEN-A, B, C の3種類とし, ARU-TEN-A は成分規定 のみで機械的性質を保証しないもの, ARU-TEN-B は引張 試験を保証するもの, ARU-TEN-C はさらに衝撃試験を保 証するものである。

6. ARU-TENの実機適用例

図14に製鉄所の石炭垂直コンベア(PCI)ダクトに適用 された無機Znプライマを塗布したARU-TENを示す。海 岸から200m程度に位置し,高塩害環境となる。約2.8年 経過しているが,良好な外観で推移している¹¹⁾。その他,

表8 ARU-TEN の化学成分 Chemical compositions of ARU-TEN

С	Si	Mn	Р	S	Cr	T-Al	Others
							Other
$\leq 0.05 \leq 0.55 \leq 3.00 \leq 0.55$	< 0.55	< 2.00	- 0.025	< 0.025	5.50	< 1.10	elements may
	≥ 0.035	≥ 0.033	≧ 5.50	≥ 1.10	be added if		
							necessary

製鉄所の鉱石原料輸送コンベア下落粉板,沿岸地域工場設備など,高塩害環境下での適用を進めている。

また,昼夜の結露に伴う,濡れ渇きだけの塩化物濃度の 低い屋内機器などの比較的マイルドな腐食環境においては 無塗装でも良好な耐赤さび性が期待できることから,図15 に示す真空容器などへの適用も進めている。

7. 結 言

無機Znリッチプライマ劣化後の亜鉛系腐食生成物による弱アルカリ化とCrやAlなどの合金元素添加によって、 鋼板表面を不動態化させることで高価なレアメタルの添加 量を大幅に削減しつつ、高塩害環境においても優れた耐食 性を発揮できるARU-TENを開発した。

ARU-TEN は、ステンレス鋼に近い耐食性を有しながら、 炭素鋼に近い機械加工性、溶接性を有する今までにない耐 食鋼であり、このような特徴を活かし、今後、沿岸地域の 工場設備や屋内環境の精密機械などへの適用拡大が期待 されている。

謝 辞

製鉄所の垂直コンベアダクトへの適用にあたり,新日鉄 住金エンジニアリング(株) 鈴村恵太氏,五郎丸和夫氏に, また,屋内機器への展開では,日鉄住金テックスエンジ(株)

表9 ARU-TEN の機械的性質 Mechanical properties of ARU-TEN

Grade Thickness (mm) Yiel (N	Thielmore	Yield point	Tensile	Fensile			Charpy impact test (1/4 thickness-longitudinal direction)					
	Yield strength (N/mm ²)	Strength (N/mm ²)	Thickness (mm)	Test specimen	(%)	Thickness (mm)	Test temp. (°C)	Absorbed energy (J)	Test specimen			
ARU-TEN-A				No test								
ARU-TEN-B	6-25			≦ 16	JIS 1A	≥ 15	> 12		No test			
	(2.3-50)	≥ 315	490-700	16 <	JIS 1A	≥ 19	. 12			many 1		
ARU-TEN-C				40 <	JIS 4	≥ 21		0	≥ 27	JIS V-notch		

図 14 ARU-TEN 製石炭垂直コンベアダクト Coal perpendicular conveyer duct of ARU-TEN

図 15 ARU-TEN 製真空容器 Precision machinery of ARU-TEN

花澤真氏, 岩崎満男氏に, 多大なるご協力を頂いたことを 付記し, ここに謝意を表します。

参照文献

- 1) 原田幸明:工業材料. 62 (5), 18 (2014)
- 潮田浩作,吉村仁秀,海藤宏志,木村謙:鉄と鋼. 100 (6), 716 (2014)
- 4) 梶村治彦: (社)日本鉄鋼協会 第 215/216 回西山記念講座.
 2013
- 4) 松島巌: 低合金耐食鋼. 地人書館, 1995, p.15
- 5) Kihira, H., Kimura, M: Corrosion. 67, 9 (2011)

- 6) 宇佐見明,奧島基裕,坂本俊治,西村哲,楠隆,児嶋一浩: 新日鉄技報. (380), (2004)
- 7) 例えば,松本雅充,岡田信宏,西原克浩,木本雅也,工藤赳夫:鉄と鋼.94 (11),545 (2008)
- 8) 原田和加大, 伊東建次郎, 足立俊郎: 日新製鋼技報. (68), (1993)
- 9) 長澤慎, 金子道郎, 加藤謙治, 斎藤直樹, 都築岳史, 田中睦 人: CAMP-ISIJ. 26, 289 (2013)
- 長澤慎,金子道郎,加藤謙治,斎藤直樹,都築岳史,田中睦 人:鉄と鋼.投稿中
- 11) 鈴村恵太, 五郎丸和夫, 長澤慎, 田中睦人: CAMP-ISIJ. 26, 291 (2013)

長澤 慎 Makoto NAGASAWA 鉄鋼研究所 厚板・形鋼研究部 主任研究員 千葉県富津市新富20-1 〒293-8511

斎藤直樹 Naoki SAITOH 日鉄住金テクノロジー(株) 名古屋事業所 品質保証部 上席主幹

都築岳史 Takeshi TSUZUKI 厚板事業部 厚板技術部 厚板商品技術室 主幹

金子道郎 Michio KANEKO 鉄鋼研究所 厚板・形鋼研究部 上席主幹研究員 博士(工学)

田中睦人 Mutsuto TANAKA 厚板事業部 厚板技術部 厚板商品技術室長