自動車ボディの接合技術における最近の課題とその対策技術ー前編

Current Problems and the Answer Techniques in Welding Technique of Auto Bodies-First Part

古迫誠司* 渡 辺史徳 村 山 谷 秀 樹 元 濱 Seiji FURUSAKO Fuminori WATANABE Gen MURAYAMA Hideki HAMATANI 及川初彦 橋靖雄 野瀬哲郎 高 Hatsuhiko OIKAWA Yasuo TAKAHASHI Tetsuro NOSE

抄

録

自動車ボディには高い衝突安全性と同時にCO₂排出量削減のために軽さが求められることから,高強度 鋼板の使用が増えている。こうした自動車ボディの組立てに使われる接合技術に関し,近年の技術動向と 研究成果を紹介した。スポット溶接では,高強度鋼板継手の剥離試験(十字引張)時応力のFEM解析とそ の結果に基づいた十字引張強度向上溶接技術について,また溶接が困難である高板厚比3枚板組や中空部 材の溶接技術について紹介した。

Abstract

Application of high strength steel for the auto body has been increasing, because lightness is required in order to reduce CO_2 emissions at the same time as the high collision safety. This paper focused on technology trend and research progress concerning welding techniques which are being used for the assembly of auto bodies. On the resistance spot welding, the following results were introduced: 1) stress analysis by FEM in case of cross tension test for joint using high strength steel sheet, 2) improvement technique of cross tension strength based upon the FEM analysis, 3) welding technique of three steel sheets with a combination of substantially different thicknesses and 4) welding tecnique of an open section component like a hydroformed one.

1. 緒 言

抵抗スポット溶接は、1900年頃、鍋の取手の接合で最 初に実用化されたとされ、第2次世界大戦が終わった翌年 の1946年には、既に自動車の車体製造に使われていたよ うである¹⁾。近年、自動車用鋼板の高強度化が進むととも に、高強度鋼継手での剥離(十字引張)強度(以下、CTS: Cross Tension Strength)の低さが指摘されるようになった。 高強度化は車体軽量化と衝突安全性確保に必須の技術であ るものの、CTSの低さは時として高強度化を阻害する。そ こで、高強度鋼継手で CTS が低い理由について破壊力学 的考察を行い、その結果に基づいて CTS 向上溶接技術の 開発を試みた。

一方,車体軽量化の要求はパネル類を薄厚化する流れを 生み,現在,板厚0.55mmの鋼板も使われている。その結 果,電極に隣接する薄鋼板の配された高板厚比3枚重ね板 組の溶接では,総板厚によっては,薄板-厚板界面にナ ゲットを形成することが困難となる場合がある。また,点 接合であるスポット溶接では溶接点間の遊びのために部材 の剛性が低くなることから,剛性向上を目的として,一体 構造で閉断面を実現できるハイドロフォーム部品の適用が 期待される。しかし,中空である部材に他の鋼板をスポッ ト溶接しようとすると,溶接中に電極が沈み込み,ナゲッ ト形成に必要な電流密度の高さが得られなくなる。これら スポット溶接が困難な対象の溶接方法についても最近の研 究成果を紹介する。

2. スポット溶接

2.1 高強度鋼板のスポット溶接継手の強度

車体の安全基準への対応と環境負荷低減,即ち高強度化 と軽量化という相反する性能を両立するため、590MPa以 上の高強度鋼の採用が拡大しつつある。現在では引張強さ が1500MPa以上の鋼板も適用されており、その工法は熱 間プレスが主流である²⁾。スポット溶接継手の強度は、図

 図1 スポット溶接継手のTSSとCTSに及ぼす鋼板の引張強 さの影響

1に示すように、引張せん断強さ(TSS)は鋼板強度の上 昇に伴い増加傾向を示すが、十字引張強さ(CTS)は鋼板 強度が780MPa以上で低下する³⁾。この原因として、高強 度化に伴いナゲット端部への応力集中が増すこと⁴⁾、ナ ゲットの延性や靭性が低下することが考えられる。鋼板強 度を確保するためにCなどの添加元素を増加すると溶接 金属(ナゲット)の硬さは上昇し、硬さが上昇すれば靭性 は低下する。さらに脆化元素としてPやSが知られ、これ らが増加しても靭性は低下する。こうした元素の影響をま とめて表現した次の炭素等量式が知られている⁵⁾。

Ceq(spot) = C + Si/30 + Mn/20 + 2P + 4S \leq 0.24 (%) C, Si, Mnはナゲットの硬さ上昇に影響し, PやSは偏析 に影響してナゲットの靭性を低下させると考えられる。右 辺の閾値は十字引張試験での強度や破断形態の健全性を表 現しており, Ceq(spot)が上式の範囲であればナゲット外 で破断 (プラグ破断)し, CTSは高くなる。一方,鋼板成 分の制御によるCTS向上が試みられている。佐久間らは, 鋼板強度が同等でもC量の減少やSi量の増加に伴い溶接 部強度が上昇することを報告している⁶。C量が増加する と溶接部硬さが増し,ナゲット端の応力集中に対する破壊 の感度が増すため,CTSが低下すると推定した。Siは焼入 れ性元素であり,Siを増加すると焼入れ硬化する領域が拡 大し,即ち,ナゲットから母材に掛けての硬さ変化が緩や かになることに起因し,CTSが向上すると推定した。

2.2 十字引張試験における破断解析

従来から知られる材料力学モデルでは、鋼板強度の向上 とともに CTS も向上することが期待されるが、図1に示 した実現象と一致しない。そこで、新たに破壊力学に基づ いた十字引張試験の考察⁷⁾を行い、CTS支配因子の解明を 試みた。 十字引張試験におけるスポット溶接継手の破断をナゲット周囲からのき裂進展問題と捉え、延性的な破壊から脆性的な破壊までを統一的に理解するために、弾塑性破壊力学モデルで検討した。弾塑性破壊力学では、引張負荷に対するナゲット周囲のき裂進展駆動力Jが、ナゲット端部の破壊靭性値 J_c に達すると、き裂が進展すると考えられる。そこで、十字引張試験におけるJ値の導出とナゲット端部の J_c 測定を試みた。

J値を導出するために、弾塑性FEM解析での仮想き裂進 展によるポテンシャルエネルギー変化からJ値を算出する 手法®を十字引張試験に適用した。スポット溶接継手の十 字引張試験では、十字に重ね合わせた鋼板の中心を溶接し た試験体に鋼板同士を剥離する負荷をかけるため、ナゲッ トにかかる応力は軸対称ではなく、90°周期の4か所で高 くなる。仮想き裂はこのうちの1か所から進展させること とした。解析では継手の対称性から1/2のモデルを作成し た。この開発した手法により、J値のナゲット径およびき 裂進展方向についての依存性を評価することとした。ナ ゲット径は板厚t(1.2mm)の平方根を基準として3 \sqrt{t} , 4 \sqrt{t} , 5 \sqrt{t} の3水準とし、またナゲット内破断とプラグ破断それ ぞれの初期き裂進展に対応する、界面方向(板面と平行) と板厚方向の仮想き裂をモデル化した。

荷重4kNにおける最大主応力分布図を図2に示す。図 中の破線が溶融境界であり、ナゲット端部の仮想き裂が変 形時に開口していることが確認できる。この開口によるポ テンシャルエネルギー低下量をき裂面積で除してJ値を算 出した。荷重5kNにおける2種類のき裂について算出し たJ値のナゲット径依存性を図3に示す。本図より、両き 裂方向において、ナゲット径が大きくなると、同一荷重に おけるJ値が小さくなることが判る。また、ナゲット径 $3\sqrt{t}$ における解析結果では、界面方向にき裂を進展させた 場合のJ値の方が板厚方向にき裂を進展させた場合のJ値 よりわずかに大きい。しかし、ナゲット径が4 \sqrt{t} 、 $5\sqrt{t}$ と 大きくなると、反対に板厚方向にき裂を進展させた場合の J値の方が大きくなる。

これら解析結果は、ナゲット径が大きくなると CTS が

図2 4kN載荷におけるナゲット端部の変形状態と最大主応 力分布図

Deformed state and distribution of maximum principal stress at edge of nugget under the load of 4kN

図3 5kN載荷におけるJ値のナゲット径依存性 Dependence of J-value on nugget diameter under the load of 5kN

増加し,破断形態がナゲット内破断からプラグ破断へ移行 する実験結果に対応しており、J値という概念が十字引張 試験の解析に有効であることを支持している。従って、ナ ゲット端部のJ値を抑制する,あるいは破壊靭性J.を高く することで CTS を向上可能であると考えられる。

ところで,これまでにスポット溶接部のき裂進展のクラ イテリオンとなる局所のJ。については報告されていない。 そこで、ミニチュアCT (Compact Tension) 試験片を用い る方法を採用し、成分系が異なる2種類の980MPa級鋼に おけるナゲット端部のJcを評価した。さらに両鋼板のス ポット溶接継手のCTSを測定し、得られたJcと比較した。 加えて,両試験片の破面形態も比較した。

供試材には0.13%Cと0.30%Cの980MPa級鋼板(板厚 1.4mm)を用い、同種材同士のスポット溶接継手(ナゲッ ト径 $4\sqrt{t}$)を作製した。溶接には、サーボモータ加圧式・ 単相交流定置式スポット溶接機を用いた。交流周波数は 50Hzであり(次節以降も全て50Hz前提), 1 cycle=20ms である。加圧力 3.4kN,通電時間 16 cycle にて,電流値を 調節して4√tのナゲットを形成した。

作製した継手のナゲット端部から,図4,5に示すよう に、インチサイズCT 試験片の1/25 サイズ (厚さ(B)=1 mm, 幅(W) = 2 mm) で試験片を切り出した。低荷重で 剥離する圧接部(コロナボンド部)を予き裂として用い た。き裂開口負荷は、試験片の穴に通したワイヤーを引張 試験機に取り付けて、200 µm/min で引っ張ることで与え た。試験片の破壊荷重からJISG0564に基づいて導出した K_{o} が,破壊靭性値 K_{c} と等しいとして, K_{c} は0.13%Cの材 ナゲットで84MPam^{1/2}以上, 0.30%C材ナゲットで 29MPam^{1/2}と導出された。また、 K_c 値から変換された J_c 値 はそれぞれ30kN/m以上, 3.7kN/mと見積もられた。破壊 後の0.30%C材試験片は、図6に示すように、ナゲット端 部は粒界割れ、ナゲット内部はへき開破面を呈した。

それぞれの鋼種を用いた継手の CTS は 0.30% C 材が 6.6kN, 0.13%C材が2.4kNとなり、その比は0.38であった。 破壊靭性試験結果での破壊応力比 [J_c(0.30%C) / J_c(0.13

Specimen preparation position

ミニチュアCT試験片の外観 図 5 Appearance of miniature CT specimen

Edge of nugget

Inside of nugget

SEM images of fracture surface of miniature CT specimen after testing (0.30mass%C)

%C)] ^{1/2} (Jの平方根は応力に比例) は 0.35 であり、この CTS比に近い値となった。0.30%C材の十字引張試験片の 破面は, ナゲット端部で粒界割れ, ナゲット内部でへき開 破面を呈した。

このように、ミニチュアCT試験片を用いた破壊靭性試 験結果と十字引張試験結果の比較により、Jcが低い溶接部 は CTS も低くなる傾向, そして両試験における破面形態 が一致する傾向が確認された.したがって、両試験で同様 な破壊現象が生じたと考えられ、この結果はCTS がナ ゲット端部の破壊靭性に支配される可能性を示唆してい る。従って、ナゲット端部の破壊靭性」。を向上させること で CTS も向上することが期待される。

2.3 後通電による CTS 向上

2.1で述べたように、剥離方向の継手強度は母材強度が 780MPaを超えると減少する。そこで浜谷らは、本通電後 に短時間の冷却時間を設けて後通電するプロセスに取り組 み,この条件の工夫によって高強度鋼継手のCTSを向上 できることを見出した⁹。この後通電プロセスでは,従来 知られた,十分な冷却時間を経てから(溶接部がマルテン サイト変態を完了してから)焼き戻すテンパー処理とは異 なり,短時間の冷却とするため,生産性の大幅な低下は無 いものと考えられる。以下に後通電プロセスについて詳述 する。

供試鋼には、板厚 2 mmのAlめっきホットスタンプ(以下,HSと省略)材を用いた。試験片はJIS Z 3137に規定 された十字引張試験片の形状に準拠した。溶接には定置式 の単相交流スポット溶接機を用い、加圧力は5 kN一定と した。通電パターンは 2 段通電方式とし、ナゲットを形成 する本通電とナゲットを改質する後通電に分離した。本通 電と後通電の間には無通電とする冷却 (クール)時間を設 け、このクール時間を変化させた。本通電時にナゲット径 は5 \sqrt{t} (t:板厚)が形成されるよう、予備試験において電 流(I_i)を 8.2kA,通電時間を 19 サイクル(電源の交流周

Effect of cool time on CTS (HS, sheet thickness 2.0mm, Nugget diameter $5\sqrt{t}$)

波数50Hz)に決定した。後通電時の電流(I₂)は予備試験 でI₁の90%に決定し、また後通電時間は5サイクルまた は20サイクルとした。

クール時間がCTS に及ぼす影響を図7に示す。CTS は クール時間6サイクルでピーク値を示し、また、クール時 間を35サイクルと長くした場合でも、後通電時間の増加 によりCTS は向上することが判る。このCTS 向上の原因 を探るため、ナゲット端部の凝固偏析の状態をFE-EPMA (電界放出型電子線マイクロアナライザ)で分析した。 Mn、Si、Pなどの偏析が確認されたが、ここではPを図8 に例示する。後通電を実施しない場合や、図8(a)に示す CTS が向上しなかった後通電条件ではPの凝固偏析がナ ゲットに維持されていた。一方、図8(b)に示すCTSが高 かったクール時間6サイクルの条件では、同部位のPの偏 析が大幅に軽減されたことが判る。これは本通電時に凝固 偏析した元素が後通電工程で拡散したことが一因と推定さ れ、前節で述べたように、ナゲット端の靭性が向上し、ひ いてはCTS 向上効果が発揮されたと考えられる。

この凝固偏析緩和の効果は谷口らも支持している¹⁰。な お、ナゲット内の硬さレベルは後通電有り無しで同等であ り、従って CTS 向上は焼き戻しによる効果ではない。一 方、後通電により Heat affect zone (HAZ) 軟化の程度やそ の領域幅は拡大傾向を示した。その HAZ 軟化幅拡大の CTS の影響代(向上効果)を破壊力学的考察に基づき推定 し、4%程度と見積もった¹¹⁾。従って、後通電によるCTS 向上の主因は凝固偏析の緩和による靭性改善といえる。

2.4 高板厚比3枚重ね鋼板のスポット溶接

自動車のボディではサイドパネル等において,鋼板を3 枚重ねてスポット溶接される部位が存在する。中には,外 板が薄板軟鋼,内板のレインフォースが厚板高強度鋼とな

(a) Unimproved condition: Cool time=0cycle, Post current=4.1kA, Post time=5cycle

(b) Improved condition: Cool:6cycle Post current:7.3kA, 5cycle

図8 後通電条件がナゲット端部の組織および凝固偏析(P)へ及ぼす影響 Effect of post heat condition on micro-structure and solidification segregation at edge of nugget る、即ち、高板厚比となる3枚重ねの板組があり、溶接が 困難となるケースが見られる¹²⁾。ここでいう板厚比とは、 総板厚を最薄板厚で割った値である。3枚重ねスポット溶 接でのナゲットを図9(a)に示すが、高板厚比の溶接では、 図9(b)の様に薄板-厚板界面でのナゲットが形成されに くい。これは、スポット溶接では、水冷電極による抜熱に より、通電初期の鋼板表面での接触抵抗による発熱を除け ば、溶融が総板厚の中心から周辺部へ拡大していくプロセ スを経るためである。さらに実部材の精度を考慮した、鋼 板間に隙間がある場合の溶接条件設定が必要である。実際 の適正溶接電流範囲は図10に示すような範囲となり、1 段通電溶接では狭い条件範囲となる場合が多い。

上記の課題を解決する手法として、板間の隙間がない場合には、薄板側の電極先端径を小さくした上で通電中の加 圧力と電流値を変化させる方法が提案されている¹³。また、電極や加圧力は変更せずに、図11に示すパルセーショ ン入り2段通電法¹⁴⁾が提案されており、この方法について 概説する。これは、まず第一通電で、比較的高電流で薄板

(a) Definition of nugget dia.

(b) Cross section of spot-weld

図 9 3 枚重ねスポット溶接 Three sheets spot-welding

図10 3 枚重ねスポット溶接の適正電流範囲 Weldability lobe of three sheets spot-welding - 厚板界面の接触抵抗を利用した発熱を行い,次に,第二 通電で低電流のパルセーション通電により,薄板-厚板界 面および厚板-厚板界面の両方のナゲットを散り無く安定 的に成長させることを狙う。低加圧で有効となる接触抵抗 を積極的に利用せず,高加圧でもできるため,板間隙があ る場合においても,この手法は有効である。

そこで、本技術を適用した実験を行った。供試材は板厚 0.6mmの軟鋼および板厚1.6mmの980MPa級高強度鋼2枚 の3枚重ねで、それぞれの板間には1.4mmのスペーサー をスパン40mmで配置した。溶接機としてサーボモータ加 圧式単相交流溶接機を、電極は先端R40、先端径6mmの クロム鋼製ドームラジアス電極を用い、加圧力は3.43kN とした。適正電流範囲を決定する薄板-厚板界面の溶融径 を評価するため、この界面でたがね試験を実施し、プラグ 径を評価した。

その結果を図12に示すが、横軸は1段通電(通電時間 $t_1 = 18$ cycle)ではその電流とし、2段通電(第1通電時間 $t_1 = 18$ cycle、第2通電時間 $t_2 = 8$ cycle)やパルセーション ($t_1 = 18$ cycle、 $t_2 = (5$ cycle通電-2cycle無通電)×5)では2 段目の電流とした。1段通電や、2段通電の場合は、薄板 -厚板界面のプラグ径が基準値に到達してから散り発生す るまでの適正電流範囲が1kA未満であるのに対して、パ ルセーションとすると、適正電流範囲は3kA以上、板間

図12 通電条件を変化させた場合のウェルドローブ Weldability lobes by different welding current patterns の隙間なしの場合は約1.8kA確保できた。

2.5 中空部材へのスポット溶接

車体のスポット溶接においては、2枚以上の鋼板を溶接 電極で挟み加圧しつつ通電する、いわゆるダイレクトス ポット溶接が主流である。しかし閉じ断面構造となる部位 があり、この場合、電極を通過させる作業穴を設け、被溶 接部をダイレクトスポット溶接することがある。穴部の剛 性低下を補うため、鋼板の板厚増加や補強部材の追加など の対策を講ずれば、車体の重量増加を招く。そこで野間ら は、部材の穴を無くし、板厚減少(軽量化)と剛性確保の 両立を試みた¹⁵⁾。このとき、一方の鋼板面から2つの電極 で加圧通電する、2点同時のインダイレクトスポット溶接 が検討された。片側から電極加圧するため、加圧力が過大 であると溶接部が沈み込んで鋼板同士の接触面積が増大 (電流密度は低下)し、溶融溶接が困難となる。また電流 が高いと分流に伴う電極間局所の電流密度も上昇し、割れ や爆飛に至る。

対策として、加圧力は適度に低くし、さらに鋼板に凸状 の座面を設け、その部位に通電パスを限定し、低電流で あっても電流密度は高め、溶融溶接を実現した。一方、閉 じ断面構造の好例であるハイドロフォーム部材をフロント ピラーに適用したケースでは¹⁰,既存設備を用いて溶接条 件、アース電極の位置および打点順序を最適化し、安定し た溶接品質を確保している。新日本製鐵においても、中空 の部材と板状部材のインダイレクトスポット溶接技術の開 発に取り組んだ。中空部材の板厚が1.6mm、板状部材の板 厚が0.7mmの条件において、種々検討した結果、先端形 状を工夫した電極と直流電源を組合せることにより、特別 な通電・加圧パターンとせずとも、板間の隙間あり、分流 (既溶接点) ありの条件においても溶融溶接を実現した。

図13 中空部品と板状部材のインダイレクトスポット溶接部 断面

Cross section of indirect spot weld for hollow and sheet-like components

そのときの溶接部断面例を図13に示すように、十分なサ イズのナゲットが形成されたことが判る。

3. 結 言

自動車用材料として980MPa以上の高強度鋼の採用が進 んでおり、同時に特性改善のために鋼板成分や組織の改善 がなされている。さらには、部材の断面構造や板組・板厚 比も変化しており、それぞれの条件に適したスポット溶接 技術の開発が求められている。本報では各課題とその対策 を紹介したが、今後も課題の本質を明らかにし、それを反 映した対策技術の提示を目指したい。

参照文献

- 1) 奥田滝夫:スポット溶接入門. 産報出版, 1986
- 2) Euro Car Body. VW資料. 2008
- 3) 及川初彦,村山元,崎山達也,高橋靖雄,石川忠:新日鉄技報.
 (385),36 (2006)
- 4) 山崎一正, 佐藤浩一, 徳永良邦: 溶接学会論文集. 17 (4), 553 (1999)
- 5) 西 武史,斎藤 亨,山田有信,高橋靖雄:自動車高張力薄鋼板の スポット溶接性評価研究.製鉄研究.(307),56(1982)
- 6) 佐久間康治, 及川初彦: 新日鉄技報. (378), 30 (2003)
- 7)渡辺史徳,古迫誠司,浜谷秀樹,宮崎康信,野瀬哲郎:溶接学会 溶接構造研究委員会,溶接構造シンポジウム2011講演論文 集.2011,p.271
- 8) 三好俊郎, 白鳥正樹: 日本機械学会論文集(A編). 47, 424 (1981)
- 9) 浜谷秀樹,渡辺史徳,宮崎康信,田中智仁,真木純,及川初彦, 野瀬哲郎:溶接学会全国大会概要,第89集,44 (2011)
- 10) 谷口公一,池田倫正,遠藤茂:溶接学会全国大会概要,第90集, 240 (2012)
- 渡辺史徳,古迫誠司,宮崎康信,野瀬哲郎:溶接学会全国大会 概要,第90集,238 (2012)
- 12) 坂野律男:溶接学会誌.81 (3),11 (2012)
- 13) 池田倫正,沖田泰明,小野守章,安田功一,寺崎俊夫:溶接学会 論文集.28 (1),141 (2010)
- 14) 高橋, 及川:特許第4728926号
- 15) 野間一浩,加藤慎也:溶接技術.110 (2004.1)
- 16) 長谷川芳春,藤田浩史,遠藤岳晴,藤本雅昭,田辺順也,吉田正樹: Honda R&D Technical Review. 20 (2), 106 (2008.10)

古追誠司 Seiji FURUSAKO 鉄鋼研究所 接合研究センター 主任研究員 千葉県富津市新富 20-1 〒 293-8511

渡辺史徳 Fuminori WATANABE 鉄鋼研究所 接合研究センター 研究員

村山 元 Gen MURAYAMA 鉄鋼研究所 接合研究センター 主任研究員

及川初彦 Hatsuhiko OIKAWA 鉄鋼研究所 接合研究センター 主幹研究員 工博

高橋靖雄 Yasuo TAKAHASHI 鉄鋼研究所 接合研究センター 主任研究員 工博

野瀬哲郎 Tetsuro NOSE 鉄鋼研究所 接合研究センター所長 工博

濱谷秀樹 Hideki HAMATANI 名古屋技術研究部 主幹研究員 工博