四極子核に対する固体NMRの高分解能化および高感度化

Improvement of Sensitivity and Resolution of Solid State NMR for Quadrupolar Nuclei

高橋貴文* 金橋康二 Takafumi TAKAHASHI Koji KANEHASHI

抄 録

四極子核の固体NMRでは、2次の核四極子作用によりピークの線幅が広幅化し、解析を困難にする。 MQMASを石炭、粘土鉱物の構造解析に適用することで、大幅なピーク分解能の改善を達成し、詳細な化 学構造を明らかにした。一方で、多量子遷移を利用するMQMASでは感度の低下が激しく、微量元素への 適用が困難であったことから、STMAS法の技術確立に取り組んだ。STMAS法に不可欠な非常に高精度な マジック角調整機構を備えたプローブを開発し、MQMASと比較して最大で約5倍のS/Nの向上を達成 した。また、これらの手法は高磁場下での測定により、更なる高感度化、高分解能化が見られたことか ら、従来測定困難とされた低感度核種や低濃度元素への展開が期待される。

Abstract

In NMR measurements of quadrupolar nuclei, the spectral analysis has troublesome because of large line width of NMR peak that is caused by second-order quadrupolar interaction. As a result of application of MQMAS to structural analyses of coal and clay minerals, the substantial increase of spectral resolution archived has enabled us to elucidate their fine chemical structures. On the other hand, we have addressed establishment of STMAS method, because sensitivity of MQMAS is too low to perform the analysis of trace amounts of elements. A new developed NMR probe with feature of very precise adjustment of magic angle, which is critical in STMAS, has attained sensitivity enhancement of up to approximately 5 times compared to MQMAS. Since sensitivity and resolution of these methods are furthermore improved by the combination with high magnetic field strength, their application are promised for low-sensitive nuclei and low-level elements, which have been regarded as quite difficult to measure.

1. 緒 言

スラグや石炭灰などは多成分系からなる無機酸化物であ り、それらの有効利用や処理法を提案するためには詳細な 化学構造を明らかにすることが重要である。これらの無機 材料は複雑な構造を有することから、元素別の局所構造情 報が得られる固体核磁気共鳴 (NMR) は有効な構造解析 手法である。しかしながら、これらの無機材料を構成す る主要核種である²⁷Alや¹⁷O, ¹¹B等はそれぞれ核スピン I=5/2, 5/2, 3/2を有しているため、¹Hや¹³C等 のI=1/2の核種とは異なり、核電荷が球対称からず れ、歪みが生じる¹⁰。その結果、ゼーマン分裂に対する2 次の核四極子相互作用の摂動によって、観測されるピーク が真の化学シフトからずれるとともに、広幅化や分裂を引 き起こすため、詳細な構造解析の妨げとなっていた。

そこで我々は、2次の四極子相互作用を平均化できる MQMAS (Multiple Quantum Magic Angle Spinning)法に着 目し、高磁場と組み合わせることで、分解能の高い四極子 核の固体NMRスペクトルを取得し、スラグや石炭中の無 機成分の詳細な構造を明らかにした。しかしながら、 MQMASは多量子遷移を利用するその原理上、感度が極端 に低下する手法であるため、無機材料中の微量元素の化学 構造解明には至らなかった。

そこで、MQMASと同等の分解能を維持しつつ、更なる 高感度化を達成するために、我々は続いてSTMAS (Satellite Transition Magic Angle Spinning)法の技術確立に 取り組んだ。STMASスペクトルを得るためには、厳密な マジック角の調整や試料回転周波数の高い安定性が求めら れるが、これらの要求に応え得るプローブを新たに開発することで、MQMASと比較して大幅な感度向上を達成し、 微量元素の構造解析を可能とした。

2. 本 論

2.1 2次の核四極子相互作用の平均化

基本的に半整数スピンを持つ四極子核のNMRでは、中 央遷移を観測する。これは、図1に示すように、中央遷移 が1次摂動の範囲で四極子の相互作用の影響を受けないた めである。しかし粉末等の固体試料では2次のシフトが生 じ、線幅の増大を引き起こす。静磁場に対して、角度 β で 回転させた場合の2次の摂動による中央ピーク ν の一般式 を考えると、式(1)で表わすことができる。

 $v = v_0^2 / v_L \Big[A_0 + A_2 \big(\theta, \psi \big) P_2 \big(\cos \beta \big) + A_4 \big(\theta, \psi \big) P_4 \big(\cos \beta \big) \Big]$ (1)

ここで, ν_Q , ν_L , A_0 , $A_2(\theta, \phi)$, $A_4(\theta, \phi)$ は, ゼーマン相 互作用周波数,四極子相互作用周波数,等方項,試料管の 回転軸と微結晶の方向に依存する関数 (A_2, A_4) をそれぞ れ表わす。

また、 P_2 項と P_4 項はLegendre 関数の2次および4次の 項を表わす。図2より、マジックアングルは、 $P_2(\cos\beta)$ = 0となる角度 β であるので、MASでA₂の項を消去でき るが、A₄の項は消去されずに残る。よって、この2次摂動 による線幅の増大はMASを用いても完全に消去できな い。そこで、四極子核の高分解能NMRを達成するために は、A₄の項を如何に消去するかがポイントとなる。

図2より,Legendre関数の2次および4次の項に相当する P_2 項と P_4 項を異なる2つの角度 β でそれぞれ消去可能であるから,これら2つの角度で同時に試料回転させることで,両項を消去するのがDOR (DOuble Rotation)のアイデアである²)。具体的には,外部回転角度54.7°と内部回転角度70.1°(または30.6°)で,両者の回転比は5以上にする必要がある。

DAS (Dynamic Angle Spinning) は回転軸を動かすこと によって β に依存性を持たせ、横磁化を推進させる時間に 渡る積分値として、A,項とA₄項を同時に消去しようとい うアプローチである³。よって、βが不連続な角度 $\beta_1 \ge \beta_2$ のみで、横磁化がこの2つの角度の値を等しい時間だけ存 在する場合は、 $P_2(\cos\beta_1) + P_2(\cos\beta_2) = 0 \ge P_4(\cos\beta_1)$ $+ P_4(\cos\beta_2) = 0 \ge caca \beta \beta_1(37.38°) \ge \beta_2(79.18°)$ を選べば、 A_2 項と A_4 項は消去される。実験では、角度 β_1 をなす回転軸の周りに試料を回転させた状態で時間 τ_1 の 間、横磁化を時間推進させる。次に角度 β_2 に切り替える。 切り替えの時間は、90°パルスを照射することで磁化を静 磁場方向に維持する。

その後、再度90°パルスを照射し、横磁化を β_2 方向の 回転下で推進させると、 τ_1 後に化学シフトと四極子の異 方性による decay が echo として回復する。色々な展開時 間 $t_1 = 2 \tau_1$ に対してechoの振幅をサンプリングすると、そ れは両相互作用の等方平均値の和によって、時間推進す る。この echo は、等方 echo 信号と呼ばれ、これをフーリ 工変換すれば高分解能スペクトルが得られる。またこの echo 頂点からの decay を (t_1, t_2)の関数として記録し、2 次元フーリエ変換すれば、後述する MQMAS と同じよう に、等方平均値と異方性が周波数 ω_1 及び ω_2 軸に現れる 2次元スペクトルとなる。

図 2 Legendre 関数 $P_2(\cos\beta)$ 項および $P_4(\cos\beta)$ 項の角度 依存性

Angular dependency of $\rm P_{_2}(\cos\beta)$ and $\rm P_{_4}(\cos\beta)$ terms in Legendre function

MQMASはコヒーレンス次数を変化させて、最終的に等 方echoを取り出すアプローチ法である⁴⁾。強力なラジオ波 (radio frequency:rf)により多量子コヒーレンスを励起し、 位相回し(例えば、1*6*4=24回)によって特定の多量子 コヒーレンスを選択する。図3に示すz-filter⁵⁾を用いた シーケンスでは、コヒーレンス経路を対称にすることに よって、分散成分を除去している。

この原理はDASでの等方項の再構築と似ており,最大 の違いは,角度ではなく多量子コヒーレンスを利用してい る点にある。多量子遷移の中央遷移(-m↔+m)の2 次の摂動項は(1)式と似た形式で,(2)式で記述できる。

$$v_{-m \leftrightarrow +m} = v_Q^2 / v_L \Big[A_0 C_0^I(m) + A_2(\theta, \psi) C_2^I(m) P_2(\cos \beta) \\ + A_4(\theta, \psi) C_2^I(m) P_2(\cos \beta) \Big]$$
(2)

1量子遷移の式と同じであるが、コヒーレンス次数に関す る項 $C_0^1(m)$ が入っているのが特徴である。マジックアン グル下 (P_2 (cos β) = 0) にて、コヒーレンス次数 m で t_1 展開し、1量子にコヒーレンスを移動し、 t_2 後に等方 echo 信号が得られる条件は(3) 式となる。

$$t_{2} = \left[C_{4}^{I}(m) / C_{4}^{I}(1/2) \right] t_{1}$$
(3)

図 4 ほう素化合物の¹¹B-MASスペクトルと-3QMASスペク トル

Comparison of ¹¹B-MAS and -3QMAS spectra of aboron compound

ここで、 $C_{4}^{I}(m)$ は核スピンとコヒーレンス次数に応じて、 一義的に決まる値である。

MQMAS法の最大のメリットは,DOR法やDAS法と異 なり,通常のMASプローブで測定ができる点にある。さ らに,CP(<u>Cross Polarization</u>)やHETCOR(<u>HET</u>eronuclear <u>COR</u>relation)等の他のシーケンスと組み合わせて用いる ことができるため,異種核間の距離情報等も併せて得るこ とが可能となる。

MQMASスペクトルの有効性の一例を図4に示す。1次 元のMASスペクトルでは非対称に分裂したピークのみが 観測されるが、2次の核四極子相互作用が平均化された MQMASスペクトルでは、明瞭な2本のピークが観測さ れ、化学的環境の異なる2つのほう素(B)サイトが存在 していることが明らかとなる。

2.2 MQMAS を用いた製鉄プロセス材料の構造解析

MQMASをより複雑な実用材料の構造解析へ展開した。 図5に7.0Tの静磁場強度で測定した石炭aの²⁷AlNMRスペクトルを示す。MASスペクトル(図5(a))では6配位 Alと4配位Alのピークが観測された。しかしながら、特 に6配位Alのピークについては非対称に広幅化しており、 これが複数の鉱物に起因するものなのか、あるいは2次の 核四極子相互作用によるものなのかが不明確であった。そ の一方、3QMASスペクトル(図5(c))では2つ以上の

図 5 石炭aの²⁷AI-MASスペクトル (a)静磁場強度(7.0T)にて測定した²⁷AI-MASスペクトル, (b) ²⁷AI→¹H CP/MQMASスペクトル, (c) ²⁷AI-3QMASスペクトル ²⁷AI-MAS spectra of natural coal a (a) ²⁷AI-MAS spectrum at static magnetic field of 7.0T, (b) ²⁷AI →1H CP/MQMAS spectrum and (c), ²⁷AI-3QMAS spectrum ピークが明瞭に検出できていることから、石炭a中には2 種類以上の鉱物が混在していることがわかった。この2次 元スペクトルと鉱物の標準試料の2次元スペクトルのピー クの座標を比較することで、鉱物種の特定を行うことが可 能となる。また、前述したように、MQMASは他のシーケ ンスと併用することが容易であることから、石炭aに対し て¹H \rightarrow ²⁷Al CP / MQMAS を適用した結果を図 5 (b) に 示す。

この手法は、まず[']H 核の磁化を²⁷AI 核に移し、その後 MQMAS によって高分解能²⁷AI NMR スペクトルを得る。 したがって、H が近傍に存在する AI のピークのみを選択 的に検出することができる。6 配位 A1 に着目すると、 MQMASスペクトルでは①~③のピークが観測されている のに対し、CP / MQMASスペクトルでは①、②のピーク のみが選択的に観測されたことから、①および②はAI-OH 結合を持つカオリン等の粘土鉱物であり、③は AI-OH を 持たないアルミナ系酸化物であると特定した。その他、ス ピンが5 / 2 以上の核種においては、より高次のコヒーレ ンスを用いた MQMAS スペクトル測定により、高分解能 化が達成される。つまり、スピン I = 3 / 2 の場合には、 3QMAS測定のみであるが、I = 5 / 2 の場合には3QMAS および 5QMAS 測定を用いることが出来る。

一般的には、高次のコヒーレンスを用いるほど高分解能 化が期待できるが、その分、感度は著しく低下する。従っ て、5QMASになると、測定可能な核種はかなり限定され ることになる。粘土鉱物モンモリロナイトは、6配位 AI に配位する水酸基の立体配置の違いにより、空隙サイトの 分布が変化し、物性にも影響を与えることが知られる⁶⁷⁾。 そこで、AIの局所構造より水酸基の立体配置を推定する ことを試みた。図6に、粘土鉱物モンモリロナイトの6配 位領域について、³⁷AI-3QMAS、-5QMASスペクトルを測定 した結果について示す。3QMASスペクトル測定では区別 出来ない複数のAIサイトが、5QMASを用いることによっ て初めて明らかになった。その結果、八面体層で、イオン が欠落したサイトでは、水酸基がcis配置を示すことが分 かった。 以上のように、四極子核の固体NMRにおいては MQMASスペクトルは1次元のMASスペクトルと比較し て、2次の核四極子相互作用が平均化されるため、ピーク の分解能が格段に向上する場合が多く、核四極子結合定数 を大きい複雑な材料系に対して特にその効果が顕著とな る。その一方で、MQMASにおける多量子遷移の励起効率 および1量子への変換効率の悪さから、測定感度が極端に 低下するという問題が生じる。

2.3 STMAS の原理

そこで、MQMAS で利用していた多量子遷移の代わり に、サテライト遷移ST (例えば $-3/2 \leftrightarrow -1/2$)と中 央遷移CT($-1/2 \leftrightarrow 1/2$)との相関を取ることで、感 度のロスを抑えるというのが STMAS のコンセプトであ る。

先ほどと同様の形式に従うと,サテライトシグナルの励 起は次のように表わされる。

$$\langle v_{1/2 \leftrightarrow 3/2} \rangle = \frac{1}{v_L} \Big[B_0(\eta) + A_2(\theta, \phi, \eta) B_0(I) P_2(\cos\beta)$$
$$+ A_4(\theta, \phi, \eta) B_0^4(I) P_4(\cos\beta) \Big] \Big(\frac{3}{2I(I-1)} C_Q \Big)^2 \quad (4)$$

ここで η , ϕ , C_o は非対称パラメーター,オイラー角成 分,四極子結合定数を表わす。係数は異なるが,新しい項・ Bが掛かっており,新たな自由度が付与されるという意味 では MQMAS と同じである。図1に示すように,サテラ イト遷移は中央遷移と異なり1次の摂動を受けるため,1 次の核四極子相互作用を完全に平均化することが測定上, 最も重要なポイントである。具体的には,正確にマジック アングルを調整することと(54.736°±0.003°), t_1 方向 のサンプリング間隔を試料回転速度と完全に同期させるこ とが求められる。

そこで、我々は、厳密なマジックアングルを長期に渡り 保持可能な機構を備えたSTMAS用プローブを開発すると ともに、回転速度についても20kHzに対して、±0.002kHz の揺らぎに制御することに成功し、STMASに必要な技術 的課題を克服した。

6 粘土鉱物,モンモリロナイトの2'AI-MQMASスペクトル (a) 5QMAS, (b) 3QMAS ²⁷AI-MQMAS spectra of Na-montmorillonite (a) 5QMAS and (b) 3QMAS

2.4 STMAS と MQMAS の 感度および 分解能比較

そのうえで、カオリン (Al_Si_O₅(OH)₄, $C_0 = 3.6 \text{ MHz}$) およびガラス(43.1CaO-12.5Al₂O₃-44.4SiO₂, C_0 =7.2 MHz) を用いて、STMASおよびMQMASの感度および分解能を 比較した。MQMAS 測定用パルスシーケンスとして, 3QMAS および3Q-SPAM (Soft Pulse Added Mixing) パルス シーケンスを用い,STMAS 測定用パルスシーケンスとし て、DQF, DQ, DQF-SPAMを用いて測定し、S/N比および 半値幅を求めた。各パルスシーケンスで得られるS/Nの rf 強度依存性を図7 に示す。MQMASにおいて良いS/N を得るには、できる限り強いrf 磁場が必要であることが分 かる。ただし、rf 強度の増加に伴うS/Nの増大効果も、 90 kHz 以上になると飽和する。また、ガラスに対して STMASが示す感度向上効果は、カオリンに対するものよ り小さい。例えば、最大rf強度において、カオリンでは、 3Qz (3QMAS with z-filter) に比べ最大4.5 倍の感度向上効 果が得られるのに対し、ガラスでは、最大3倍の効果で あった。こうした感度向上効果の違いは,四極子相互作用 の大きさの違いより、むしろ試料の結晶性に起因すると考 えられる。すなわち、ガラスのようなアモルファス試料で は、サイドバンド形式のサテライト(ST)シグナルが、よ り結晶性の高いカオリンに比べ出現しにくいため、観測さ

れるSTシグナルの強度が減少する。このことがSTMASスペクトルのS/N悪化を招き,感度向上効果を減衰させると推定される。

さらに、各パルスシーケンスの分解能を評価するため、 F₁軸への投影スペクトルより半値幅を算出した。半値幅 は、rf強度に対して依存性を示さなかったことから、最大 rf 強度で得られた値を各パルスシーケンスの半値幅とし た。カオリン、ガラスそれぞれの測定で得られた半値幅と 既報のhomogeneous broadening factor⁸⁰との比較を表1に示 す。カオリンで得られる半値幅は、文献値とほぼ一致する のに対し、ガラスで得られるSTMASの半値幅は、MQMAS より一貫して広いことが分かる。これは、ガラスの^[4]AIサ イトの核四極子相互作用が大きいことを考えると、対称遷 移に対しては影響を及ぼさない高次の相互作用(3次の四 極子相互作用、化学シフトの異方性と2次の核四極子相互 作用との交差項)の影響により、STMASスペクトルが広 幅化したためと考えられる。

ただし、ガラスは、もともと構造の分布が大きくピーク 自体が広幅であるため、STMASを採用することによる分 解能への影響は小さいと考えられる。これらの点を考慮す ると、STMAS、特にDQF-SPAMパルスシーケンスを採用 することにより、MQMASと同等の分解能を維持しつつ、

Dependence of S/N (signal to noise) ratios on the applied r.f. field strengths in the observation of (a) kaolin and (b) glass Note that S/N ratio for each pulse sequence is normalized by that for 3Qz

表1 ISO軸への投影NMRスペクトルの半値幅に基づくSTMASとMQMASの分解能比較 (各半値幅は3Qzの半値幅で規格化してある)

Comparison of resolution between STMAS and MQMAS based on the full widths at half maximum of NMR spectra projected on ISO axis (Note that each value is normalized by that for 3QMAS)

	DQF-SPAM	DQF	DQ	3Q-SPAM	3Qz	5Qz
Kaolin	0.96	0.96	1.31	0.87	1	0.45
Glass	1.26	1.26	1.36	1.08	1	0.79
Ref. *1	1	1	1.77	1	1	0.24

*1 Trebosc et al.8): Homogeneous broadening factor

最大の感度向上効果が得られると考えられる。

2.5 STMASによる微量元素化学構造解析の実現

そこで, DQF-SPAM パルスシーケンスを用いて微量ほ う素の化学形態解析を試みた。ほう素は,環境排出規制が 強化された元素の1つであり,石炭灰等の再利用を進める うえで,ほう素固定化が1つの大きな課題となっている。 これまでの研究⁹により,ほう素の化学構造が溶出特性を 支配すると推定されており,固定化に寄与する相を解明す るためにも,微量なほう素の化学形態解析技術が必要とさ れていた。

図8に原炭および石炭灰の¹¹B-MASスペクトルを示す。 原炭では、3つのほう素サイトが確認され、核四極子相互 作用($C_{\rm Q}$)値はいずれも0.9MHzと小さいことから、4配 位ほう素である。また、化学シフトの領域、および燃焼実 験を考慮すると、サイトaのみが無機型のほう酸化合物、 b、cは、有機型ほう素に帰属される¹⁰⁾。

一方、1500℃での灰化後には、すべてのほう素サイト は3配位型となり、その化学シフトの領域から $Ca_2B_2O_5$ お よび $Ca_3B_2O_6$ の混合物として存在することが考えられる。

図 8 (a) 原炭および(b) 灰化した後の¹¹B-STMAS NMR スペ クトル

ほう素濃度は,原炭が0.008mass%,石炭灰が0.24mass% ¹¹B-STMAS NMR spectra for (a) raw coal and (b) coal ash Concentration of boron for the raw coal and the coal ash is estimated to be 0.008mass% and 0.05mass%, respectively. 実際,同試料のSIMS (Secondary Ion-microbe Mass Spectrometer) による元素マッピングによって,ほう素と カルシウムが石炭灰粒子中で強く相関し,共存している様 子も観測され,この考察を裏付けている¹¹⁾。

以上のように、材料の中に含まれる微量元素の化学構造 解析がSTMAS法により可能になった。ただし、実際には、 $C_{\rm Q}$ 値に対する感度依存性も存在し、これによって、濃度 限界が変化する。即ち、 $C_{\rm Q}$ 値が $0 \sim 1$ MHzと小さい場合、 ほう素濃度約0.005mass%まで一週間で測定可能であるの に対し、 $C_{\rm Q}$ 値が2 MHz以上と大きい場合、およそ10倍の 約0.04mass%が測定限界濃度レベルと考えられる。

2.6 高磁場 NMR の有効性

ここまで, MQMAS, STMAS などの手法開発による高 分解能化, 高感度化について議論した。実際には, これら の手法をどの磁場で用いるのかも重要な条件となる。そこ で,次に,磁場強度の影響について検討した。

図9にいくつかのAI含有化合物に関し、静磁場強度に 対するS/Nの依存性を示した。核四極子相互作用がない $(P_Q=0)$ 化合物の場合には、理論通り、磁場強度 (B_0) の 3/2乗に比例してS/Nが向上するのに対し、四極子相 互作用が存在する $(P_Q \neq 0)$ 化合物では、理論値以上の感 度効果が得られている。また、その傾向は、四極子相互作 用が大きい化合物ほど顕著に観測されている。これは、2 次の摂動によるピークの広がりが ppm スケールでは共鳴 周波数の2乗に反比例するので、見かけ上のS/N向上の 効果は P_0 が大きい系ほど大きくなるためと考えられる。

また、図10に静磁場強度を変化させたときの石炭bの ²⁷AI MQMAS スペクトルを示す。7.0 T (図10(a)) では

図9 様々な四極子結合定数(P_q)を持ったAIサイトに関する 静磁場強度(テスラ・T)とS/N(signal/noise)比の関係 Relationship between static magnetic field strength (in Tesra, T) and signal to noise (S/N) ratio for AI sites with various P_q values

明瞭に区別できなかった6配位 Al のピークが16.4 T (図 10(b))での測定では明瞭に区別され,石炭中に存在する Al含有鉱物種を特定することができた。さらに我々は,石 炭のSiおよびAl含有量とAl含有鉱物種との間に,ある程 度の相関が見られることに見出している¹²⁾。

STMASにおいても、同じ静磁場強度のMQMASと比べ て最大5倍程度のS/Nの向上が確認できるが、高磁場下 でのSTMASスペクトルにより、更なる感度の向上が達成 される。図8に示した石炭灰中のほう素に関しても、静 磁場16.4 Tで1週間程度の積算により、初めてSTMASス ペクトルが得られており、同じ静磁場強度の MQMAS で はS/Nが大幅に低下し、ピーク自体が得られない。従っ て、前項で議論したSTMASの測定限界濃度レベルは、高 磁場下での測定により改善する余地があると考えられる。

3. 結 言

MQMAS法およびSTMAS法の測定技術を確立することで,固体NMRの高分解能化,高感度化に取り組み,これら測定手法を鉄鋼プロセス材料の解析へ展開することで,以下の知見を得た。

- (1) MQMAS法では、MAS法に比べて飛躍的なスペクトルの高分解能化が達成される。ただし、多量子コヒーレントを応用した原理特性上、著しく低感度であり、微量元素の精密化学構造解析には適用できない。
- (2) STMAS法は、MQMASの高スペクトル分解能を維持しつつ、感度面では最大5倍の向上効果が得られる。その結果、従来不可能であった低濃度元素の構造解析が可能となった。今後も、主に低濃度元素、低感度元素について、STMASの展開が期待される。
- (3) MAS スペクトル測定はもとより、MQMAS スペクト ル、STMAS スペクトル測定においても、高磁場化に より感度向上、高分解能化が達成される。特に、四極 子相互作用の大きいサイトに対しては、高磁場下での 測定が有利である。

参照文献

- 1) Ueda, K., Ohnuki, A.: 重い電子系の物理. 初版. 裳華房, 東京, 1998, p.361
- 2) Samson, A. et al.: Mol. Phys. 65, 1013(1988)
- 3) Terao, T. et al.: J. Chem. Phys. 85, 3816(1986)
- 4) Frydman, L., Harwood, J.S.: J. Am. Chem. Soc. 117, 5367(1995)
- 5) Amoureux, J.P. et al.: J. Magn. Reson. A. 123, 116(1996)
- 6) Drits, V.A. et al.: Clays and Clay minerals. 54, 131(2006)
- 7) Takahashi, T. et al.: Clays and Clay minerals. 56, 525(2008)
- 8) Trebosc, J. et al.: Solid State Nucl. Magn. Reson. 31, 1(2007)
- 9) Kashiwakura, S. et al.: Fuel. 88, 1245(2008)
- 10) Takahashi, T. et al.: Environ. Sci. Tech. in press, 2010
- 11) Hougardy, J. et al.: J. Chem. Phys. 64, 3840(1978)
- 12) Kanehashi, K.: J. Japan Institute of Energy. 88, 119(2009)

高橋貴文 Takafumi TAKAHASHI 先端技術研究所 解析科学研究部 主任研究 員 Ph.D 千葉県富津市新富 20-1 〒 293-8511 TEL:(0439)80-3056

金橋康二 Koji KANEHASHI 先端技術研究所 解析科学研究部 主任研究 員 Ph.D