免震U型ダンパーの開発

Development of U-shaped Steel Damper For Seismic Isolation System

鈴木 一 弁*(1)渡辺厚*(1)佐伯 英一郎*(2)Kazuaki SUZUKIAtsushi WATANABEEiichiro SAEKI

抄 録

日本における免震構法は阪神淡路大震災を機に幅広く認められ,民間建物を始め,自治体庁舎,消防署等の震 災時に防災拠点となる重要建築物に多く採用されている。U型ダンパーの特徴を簡単に紹介し,水平方向性能及 び速度・温度依存性能に関して実験を行ったのでその結果を示した。

Abstract

Seismic isolation system was widely admitted after Hanshin-Awaji (Kobe) Earthquake in Japan. It has been adopted in important buildings that become a disaster prevention base after earthquakes such as public office buildings and fire stations including a private building a lot. In this paper, the authors easily describe the feature of U-shaped steel damper and the results of experiments to the horizontal property and the velocity and the temperature dependency.

1. はじめに

1995年1月17日に発生した阪神淡路大震災から早くも10年が経過 する。この震災で死者6400人,全壊住家18万世帯(10万棟),非住家 の被害500棟もの大被害を受けた。この教訓を機にライフラインや 公共構造物の耐震性,防災計画,救援活動等,様々な分野に対し見 直しが行われ,地震に対する意識やその備えの重要性が認識され た。先に起きた新潟県中越地震では,少なからずその教訓が役に 立っているように思える。

建築の分野においても,阪神大震災を機に建築物の耐震性能の重 要性が幅広く認識され,地震被害を最小限にする耐震建築の研究開 発が活発に行われてきた。その中で免震構法は耐震性能において最 も優れた技術として評価されてきた。免震建築は民間の集合住宅を 始め,首相官邸,美術館,消防署,庁舎等の特に社会的な重要建築 物や防災拠点となる建築物に多く採用された。これは現行の建築基 準法では,地震によって建築物が被害,損傷を受けることが前提と なっているからである。しかし現実は建物に被害を受けてしまうと 財産を失うことになり,公共建築物は地震後にその機能を果たせな くなってしまうため,地震後も無被害,無損傷となる免震構法が必 要とされてきた。

これまで免震構造物は全国に約1000件建てられている。新日本製 鐵は逸早く免震鋼棒ダンパーを商品化し,エニコムハイコムセン ターを設計・施工するなど積極的に免震構法に取り組み,技術力を 活かした商品として免震ダンパーを販売してきた。免震U型ダン パー(図1,2)は,これまで培ってきたノウハウを活かした新日本 製鐵オリジナルのダンパーである。

*(1) 建築事業部 技術開発グループ マネジャー 東京都千代田区大手町2-6-3 〒100-8071 TEL:(03)3275-6704

Type of four dampers

Type of six dampers

Type of eight dampers

図1 免震U型ダンパー U-shaped steel damper for seismic isolation system

図 2 積層ゴム一体型免震U型ダンパー U-shaped steel damper with natural rubber bearing

*(2) 建築事業部 部長 工博

2. 免震U型ダンパーの特徴

地震は建物を上下左右あらゆる方向へ揺らし,特に免震装置は水 平方向へ大きく変形する。免震ダンパーは地震時の水平360度全方 向の変形に対し,方向依存性がない安定した性能が必要となる。ま たアンボンドブレースと同様に,鋼材を積極的に塑性化させること により,塑性履歴を利用して地震エネルギーを吸収する新しい鋼材 の使い方をしており,新日本製鐵の鉄素材,加工技術を活用したエ ンジニアリング商品である。免震ダンパーは,大地震時に30cm以上 大きく変形するため、ダンパーの歪が約10%で繰り返される極低サ イクル疲労領域の過酷な使い方をする(図3,4)。

(1) U型形状【水平方向性能の無方向性,疲労・変形性能に優れる】 ダンパーをU型形状にし,長さ,幅,板厚,高さ等の寸法を最適 化したことで,地震時の水平360度から受ける変形に対し,ダン

図3 変形状況 Deformed shape

図4 履歴曲線 Hysteresis curve

Thickness

(mm)

28

36

40

45

55

85

96

118

パーに生じる歪みを局部的に集中せずダンパー全体に分散させ塑性 化させることができる。またダンパーの水平方向性能の剛性,降伏 せん断力や疲労特性に対し方向性を少なくすることができる。

(2) 製造方法【 冷間成型を実現したことによりコストは低下し,高品 質となった】

冷間成型(プレス加工)により大量生産が可能となり,低コスト, 高品質を可能とした。

(3) 商品構成【相似形状と組合せ本数により低コスト化,設計自由度 を向上させた】

ダンパーの商品構成は,ダンパーのサイズを相似則に変化させる ことで決定している(表1)。設計時に必要とされるダンパーの変形 性能,疲労特性に対してはダンパーのサイズを選択することで決定 し、必要な降伏せん断力や設置可能箇所数に対しては、ダンパーの 組合せ本数によって選択できるように設計の自由度を向上させてい る(図1)。また積層ゴムアイソレータとの一体型タイプ(図2)を開 発し,他社競合ダンパーとの対抗商品を商品化した。

U型ダンパーの性能概要

U型ダンパーの性能を確認するために数々の性能確認実験を行っ た。以下では水平方向依存性と温度・速度依存性の2種類の実験に より,ダンパーの主な性能を紹介する。

- 3.1 水平方向依存性
- 3.1.1 実験概要

U型ダンパーUD40の単体試験体に対し,水平加力方向による影響 を確認するため,0度面内方向から90度面外方向まで加力角度を変 え,力学的性能及び疲労性能を比較した。加力速度は10mm/sで静的 に載荷した。試験体の鋼材はSM 490相当品で,曲げ加工後,熱処理 したものを使用した。

3.1.2 実験結果

図5~7に0度面内,45度・90度面外方向の静的漸増加力試験結 果を示す。各方向ともに安定した履歴特性を示している。図8,9 に各加力方向における降伏せん断力,降伏変位,一次剛性,二次剛 性の関係を示す。降伏せん断力は,面外2.8tf~面内3.0tfの範囲であ り,方向性による違いがあまり生じていない。降伏せん断力及び一 次剛性は,加力角度が増加するほど低下し,降伏変位,二次剛性は 逆に増加した。なお,力学的性状は,振幅±30cmの1サイクル吸収 エネルギーが,実験値とバイリニアモデルによる計算値とが等しく なるようにして求めた。0度面内,45度・90度面外方向の定変位繰 返し加力試験結果を図5~7中にグレー色にて示す。各方向共に繰 返し加力時も安定した復元力特性を示した。

* : Displacement for 5 cycles to fracture

28

32

37

750

850

1000

Size Properties using four U-dampers Yield shear Horizontal Horizontal Horizontal elastic Horizontal limit Width force 1st stifness 2nd stifness limit displacement displacement* (kN/m) (mm) (kN)(kN/m)(mm) (mm) Leng 60 112 5920 100 19 550 Height Nidth 77 184 7600 128 24 650

8320

9600

11600

144

160

196

表1	U型ダンパーのサイズと性能	
Size &	properties of U-shaped damper	

Model

UD40

UD45

UD50

UD55

UD60

Length

(mm)

610

785

872

981

1199

Height

(mm)

231

297

330

371

453

232

304

432

図9 載荷角度による降伏せん断と降伏変位の変化 Effect of yield shear force & elastic limit displacement by loading angle

図10に繰返し加力時の各方向における破断位置を示す。面内繰返 し振幅 ± 30cmはD, 45度方向 ± 30cmはA, 面外 ± 30cmはEで破断し ており,各方向によって破断位置が変化している。地震時にダン パーは360度全方向から変形を受けるが,常にダンパーの特定場所 に歪みが集中するのではなく,部材全体に歪みを分散させエネル ギー吸収すると考えられる。また面内方向では,繰返し振幅±30cm と±50cmとでは破断位置が変わっており,面内方向の疲労特性が 30cm以上になっても他方向より低下しないのは,部材全体を塑性化 させているからである。

3.1.3 疲労特性

図11にダンパーが破断するまでの破断回数Nfと振幅 (片振幅)

Half of	Loading direction (deg)						
amplitude(cm)	0	15	22.5	30	45	60	90
±1.0	В	1	-	-	-	-	-
±1.5	В	-	-	-	-	-	-
±20	С	-	Α	-	Α	-	
± 30	D	Α	A	Α	Α	Α	Ε
± 50	Α	A	A	A	Α	Α	E

図10 破断位置図 Failure patterns of specimen

Fatigue property

Comp

の関係を示す。振幅が30cm位までは面内方向の破断回数が少なく, 30cm以上は45度方向が支配的となった。

3.1.4 まとめ

各方向共に安定した復元力特性が得られ,耐力,剛性の方向依存 性が少ない事を確認した。

3.2 速度·温度依存性

3.2.1 実験概要

試験体図と試験装置図を図12に示す。本試験の試験体は,UD40 試験体(板厚28mm)に対し,約1/3.11倍(=0.322)に縮小した相似形 モデルである。ダンパーの鋼材は,板厚9mmのSN490B(JISG 3136)を曲げ加工後,熱処理したものである。試験体の機械的性質 は,上降伏点341N/mm²,引張強度503N/mm²,シャルピー衝撃値20

268Jである。試験体の上下端部を載荷装置にボルトで固定し, 500kNアクチュエータにより水平方向に強制変形を与える。加振 は,正弦波による変位制御にて,ダンパーが破断に至るまで行っ た。試験体の温度調整は,加振装置の周囲を発砲スチロールで養生 し,加温にはジェットヒーターにて,冷却には液体窒素を用いて 行った。表2に試験内容を示す。加力方向は,面内0度方向,45度 方向,面外90度方向の3方向で行った。

3.2.2 実験結果

(1)実大と縮小試験体との比較

実大と縮小試験体の比較を表3に示す。なお,縮小試験体の値は,実大に換算した値である。また,解析用バイリニアーモデルの 換算値は,最大振幅3回目のループの1サイクル吸収エネルギーと

図12 速度・温度依存性の実験装置概要 Elevation view of test set-up

			01			
	Loading direction		Ampli- Max. vel			locity (cm/s)
Temperature		Specimen	Period	tude	1/3	Full scale
()		No.	(s)	(cm)	scaled	(×3.11)
20	In-plane	1	Static	6.4	0.7	2.2
		2	2.8	6.4	14.3	44.4
		3	1.7	6.4	23.8	73.9
		4	1.1	6.4	35.7	111.1
	45 degrees	5	Static	6.4	0.7	2.2
		6	1.7	6.4	23.8	73.9
	Out of Plane	7	Static	6.4	0.7	2.2
		8	1.7	6.4	23.8	73.9
40		9	1.7	6.4	238	73.9
- 10	In-plane	10	1.7	6.4	23.8	73.9
- 30		11	1.7	6.4	23.8	73.9
- 50	1	12	1.7	6.4	23.8	73.9

表 2 試験内容 Loading pattern

表 3	縮小試験体と実大試験体の比較
arisons 1/3	scaled specimens with full-scale specimens

				Yield			Cycle	
Sp	ecimen	Loading	Ampli-	shear	1st	1 cycle	dependency	Number of
	No.	direction	tude	force	stifness	energy	W1 (50)/	cycles to
			(cm)	(kN)	(kN/cm)	(kN/cm)	W1 (3)	fractue
	1	In plana		30	20	2236	0.80	62
Fu	II scale	in-plane		29	20	2113	0.78	55
	9	45	20	28	16	2015	0.83	111
Fu	II scale	degrees		28	16	1875	0.82	99
	12	Out of		28	11	1752	0.92	181
Fu	II scale	plane		27	12	1688	-	-

等価になるように近似して求めた。結果は,バイリニアーモデル化した時の一次剛性,降伏せん断力ともに,ほぼ同等の値を示した。 破断回数においては,縮小試験体の方が実大試験体よりも約10%多い程度で,概ね良い一致を示している。従って,縮小試験体は板厚9mmの小さな試験体ではあるが,復元力特性の比較においては良く一致している。

(2)速度依存性

面内0度・45度,面外90度の各方向の振幅±6.4cmにおいて,最大 速度を静的(0.7cm/s),14.3cm/s,23.8cm/s,35.7cm/sに変化させた場 合のバイリニアーモデル値,1サイクル吸収エネルギー量,破断回 数を比較した。図13~15に,各方向の静的加力の結果を1.0に基準 化し,その増減の割合を比較した結果を,図16に破断回数と最大速 度の関係を示す。

図15 1 サイクル吸収エネルギーと最大速度 1 cycle energy vs. Max. velocity

図16 破断回数と最大速度 Number of cycles to fracture vs. Max. V

降伏せん断力,1サイクル吸収エネルギーは,ひずみ速度の増加 にともない,最大速度35.7cm/sにおける降伏せん断力は+7%,1 サイクル吸収エネルギーは+6%増加した。また,破断回数は速度 が増加する毎に減少し,±6.4cmにおける疲労の支配的方向である 面内方向では約20%低下した。一次剛性に関しては,速度の変化に よる増加分は+2~3%であり,速度による影響は少ない。 (3)温度依存性

面内 0 度方向の振幅 ± 6.4cm,最大速度23.8cm/sにおいて,温度を 40,20,-10,-30,-50 に変化させた場合のバイリニ アーモデル値,1サイクル吸収エネルギー量を比較した。図17,18 に,20 の結果を1.0に基準化し,その増減の割合を比較したものを 示す。

降伏せん断力,1サイクル吸収エネルギーは,温度が低下する毎 に増加し,降伏せん断力,1サイクル吸収エネルギー共に,40 ~ -50 で-3%~+10%変化した。主に免震装置が設置される免震 層の温度は,実用上20 ~-10 で使用されると想定した場合,降 伏せん断力及び1サイクル吸収エネルギーの増加は,共に+3%程 度となる。

3.2.3 まとめ

(1) 速度,温度を変化させても安定した復元力特性を示した。UD55

図18 1 サイクル吸収エネルギーと温度 1 cycle energy vs. test temperature

のダンパー(板厚45mm)で,固有周期3秒,振幅±35cmの正弦波 と想定した場合,最大速度は73cm/sとなり,降伏せん断力は+ 3%増加する。

- (2) 温度の影響による復元力特性の変化は,実用上20~-10 程度 で使用する場合,+3%程度となる。
- (3) 縮小試験体により,本報の速度・温度範囲においては,速度・ 温度依存性を予測できることを確認した。
- 4. おわりに

最も優れた耐震技術である免震構法を更に普及させ,今後も地震 に強い構造物を一つでも多く増やしていきたいと考えている。

謝 辞

速度・温度依存性の実験においては,福岡大学高山峯夫教授にご 指導をいただきました。ここに記して感謝の意を表します。

参照文献