大入熱溶接に対応した建築鉄骨用高HAZ靭性鋼の開発

Development of High HAZ Toughness Steel Plates for Box Columns with High Heat Input Welding

児島明彦^{*(1)}吉井健一^{*(2)} Akihiko KOJIMA Ken-ichi YOSHII 市川和利^{*(5)}吉田譲^{*(6)} Kazutoshi ICHIKAWA Yuzuru YOSHIDA 秦 知 彦^{*(3)} Tomohiko HADA 志 村 保 美^{*(7)} Yasumi SHIMURA 佐伯修*⁽⁴⁾ Osamu SAEKI 東清三郎*⁽⁸⁾ Kiyosaburo AZUMA

抄 録

高層建築物における耐震安全性と高能率施工のニーズに対して,大入熱溶接を適用しても高いHAZ靭性を確保 できる建築鉄骨用鋼材を開発した。本鋼材は,新しいHAZ細粒高靭化技術'HTUFF®'を適用し,さらに鋼成分の 適正化をはかることにより,従来にない良好な大入熱溶接HAZ靭性を実現した高性能厚鋼板である。50~60mm 厚みの開発鋼(BT-HT355C-HF,BT-HT440C-HF)を用いて作製した4面ボックス柱のダイヤフラム溶接部(1パス のESW継手)と角溶接部(1パスの2電極SAW継手)の性能を紹介し,0 のシャルピー吸収エネルギーの平均値 が70Jを超える良好なHAZ靭性であることを示した。また,開発鋼に適合する溶接材料を用いることにより,溶 接金属部においても良好な靭性が得られることを併せて明らかにした。

Abstract

For safety against earthquake and for high efficient welding in high-rise building constructions, high HAZ toughness steel plates have been developed. Based on the new technology for HAZ microstructure refinement, HTUFF[®], and by optimizing chemical compositions of steel, BT-HT355C-HF and BT-HT440C-HF steel plates possessing high-performance of HAZ toughness have been commercialized. High heat input welded joints of box columns made of the developed steel plates, joined by electroslag welding or submerged arc welding with high efficiency, had excellent HAZ toughness more than 70J at 0 °C. The weld metal had also good toughness by using newly developed welding materials matched to the developed steel plates.

1. 緒 言

近年,阪神淡路大震災の教訓をもとに建築構造物の破壊性能に関 する研究が進み,建築鉄骨の溶接部に対して従来よりも高い破壊靭 性が要求されつつある¹⁾。たとえば,高層建築物に用いられる鉄骨 の溶接部に対して,0 で70J程度の高いシャルピー吸収エネル ギーを要求する物件が登場しつつある²⁾。一方で,建築構造物の高 層化や大スパン化に伴う鉄骨用鋼材の高強度化,厚手化と,鉄骨製 作での高能率な溶接施工の要求が高まっている。高能率溶接の例と して,4面ボックス柱のダイヤフラム溶接や角溶接に対して,エレ クトロスラグ溶接(Electroslag Welding:ESW)や多電極のサプマー ジアーク溶接(Submerged Arc Welding:SAW)などの大入熱溶接が 適用され,溶接入熱量が50~100kJ/mmに及ぶ場合がある。

従来の建築鉄骨用鋼材にこのような大入熱溶接を適用すると,溶 接熱影響部(Heat Affected Zone: HAZ)のミクロ組織が著しく粗大化

```
    *(1) 鉄鋼研究所 鋼材第二研究部 主任研究員
千葉県富津市新富20-1 〒293-8511 TEL:(0439)80-2221
    *(2) 君津製鉄所 厚板工場 マネジャー
    *(3) 大分製鉄所 生産管理部
    *(4) 名古屋製鉄所 厚板工場 マネジャー
```

し, 靱性が大きく劣化する懸念があった。そこで, 大入熱溶接を適 用しても高いHAZ靭性を確保できる建築鉄骨用鋼材の開発が望まれ ていた。新日本製鐵(株)はこのようなニーズに対して, 新しいHAZ 細粒高靭化技術⁺ HTUFF^{*}(エイチタフ): Super <u>H</u>igh HAZ <u>Toug</u>hnes Technology with <u>F</u>ine Microstructure Imparted by <u>F</u>ine Particles ^{18,4}を適 用することで建築鉄骨用高HAZ靭性鋼を開発した⁵⁻⁷⁾。

開発の考え方

2.1 高HAZ靭性鋼の開発の考え方

表1に建築鉄骨用高HAZ靭性鋼の開発目標を示す。SN490C,BT-HT325C,BT-HT355C,BT-HT440C,SM520B-SNCの各規格に相当 し,ESWや多電極SAWに対応できる建築鉄骨用鋼材を想定したも のとなっている。最も重要なHAZ靭性の目標としては、0のシャ ルピー吸収エネルギーの平均値として70Jを設定した²⁾。本検討で は,建築鉄骨としての基本性能である強度と低降伏比を安定的に確

^{*(5)} 大分技術研究部 主任研究員 Ph.D.

^{*(6)} 厚板営業部 マネジャー

^{*(7)} 建材開発技術部 マネジャー

^{*(8)} 鉄鋼研究所 鋼構造研究開発センター 主任研究員

表1 建築鉄骨用高HAZ靭性鋼の開発目標 Development targets of high HAZ toughness steel pates for box columns

2 of otophilonit tai ge		
Steel standard	: SN490C, BT-HT325C, BT-HT35	5C, BT-HT440C, SM520B-SNC
Welding method	: ESW, multi electrodes SAW, etc.	
Maximum welding heat input	: Approximately 100kJ/mm	
HAZ toughness	: Charpy absorbed energy at 0	70J (average)

保する観点から,Cと炭素当量を適正に確保したうえで,大入熱溶 接HAZ靭性の向上をはかるものとした。

HAZ靭性向上の基本的な考え方は, 有効結晶粒径の微細化, 破壊の起点となる脆化相の低減, マトリックスの高靭化,に大別 される。大入熱溶接HAZの主な脆化原因は, 粒界から変態する粒 界フェライトなどの粗大組織が脆性破壊の発生起点として作用する ことである。従って, の観点からこれらの粗大組織を微細化する ことが靭性の向上に有効である。そのためには,本特集号に掲載し ている"微細粒子によるHAZ細粒高靭化技術"HTUFF 'の開発 ")で示 したように, 粒径を小さくすることが有力な手段となる。本検討 では,このHTUFFによって酸化物や硫化物を鋼中に微細分散させ, 大入熱溶接においても溶融線近傍HAZの 粒を従来よりも小さく保 ち, 粒界から変態する組織を微細化して靭性の向上をはかった。

従来のBT-HT355C級鋼にHTUFFを適用した場合の効果を調べる ため,工場製造した従来鋼(TiN鋼)とHTUFF鋼に対して,溶接入熱 量が70kJ/mmとなるESWの溶融線近傍HAZを模擬した熱履歴を与 え,再現HAZの組織と靭性を比較した。図1と図2に両鋼の再現 HAZの組織と靭性を示す。HTUFFの適用によって 粒の粗大化が著 しく抑制されており,粒界フェライトが微細化するとともに靭性が 大幅に向上することが確認された。本検討では,このようなHTUFF の効果に基づいて建築鉄骨用高HAZ靭性鋼を開発した。

(b)TiN steel

図1 BT-HT355C級鋼のESW相当の再現HAZ組織 相当入熱量:70kJ/ mm ,最高加熱温度:1400)

Simulated HAZ microstructure of BT-HT355C class steels corresponding to ESW (equivalent heat input:70kJ/mm, reheated peak temperature:1400)

図 2 BT-HT355C級鋼のESW相当の再現HAZ靭性(相当入熱量:70kJ/ mm,最高加熱温度:1400)

Simulated HAZ toughness of BT-HT355C class steels corresponding to ESW(equivalent heat input:70kJ/mm, reheated peak temperature: 1400)

2.2 溶接材料の開発の考え方

高HAZ靭性鋼に適合する溶接材料を開発し,溶接金属部も含めて 継手全体として高い靭性を確保する必要がある。図3にBT-HT355C 開発鋼のESW溶接金属部の機械的性質に及ぼす合金元素の効果を示 す^{®)}。溶接ワイヤから添加するMo,Ti,Bなどの最適化によって靭 性が向上することを確認した。これは,溶接金属部の化学成分的な 焼入性を最適化することで,粗大な粒界フェライトの生成を抑制 し,組織の微細化をはかったためである。同様に,2電極SAWに対 して適正な溶接ワイヤとボンド型フラックスを検討し,溶接金属部 のCやMoなどを最適化することで靭性が向上した^{®)}。本検討では, このような知見に基づいて建築鉄骨用高HAZ靭性鋼に適合する溶接 材料も併せて開発した。

図 3 BT-HT355C開発鋼のESW溶接金属部の機械的性質に及ぼす合 金元素の効果

Effect of alloy elements on mechanical properties of ESW weld metal of BT-HT355C developed steel

3. 開発鋼の性能

本章では,BT-HT355C-HFおよびBT-HT440C-HFとして商品化し た開発鋼の鋼材性能と,開発鋼に適合する溶接材料を用いて作製し た溶接継手性能を紹介する¹⁰⁾。新日本製鐵(株)はこれらの商品以外 にも,表1の各規格に対応する建築鉄骨用高HAZ靭性鋼を商品メ ニューとして揃えている¹⁰⁾。

- 3.1 鋼材性能
- 3.1.1 化学成分

表2に開発鋼の化学成分を示す。強度と低降伏比を安定的に確保 する観点から、Cと炭素当量を適正に確保することを基本思想とし た。大入熱溶接HAZ靭性の観点から、従来鋼よりもCを低減し、そ の分の強度補償としてMn、Cu、Niなどを増加した。BT-HT440C-HFについては、脆化相であるMA(Martensite Austenite Constituent)の 生成を抑制する観点からも化学成分を調整した。以上の基本成分に 対して、MgやCaを鋼中に適正に含有させることでHTUFFを適用 し、酸化物や硫化物の微細分散をはかった。

3.1.2 機械的性質

TMCP(Thermo-Mechanical Control Process)と熱処理を組み合わせ

て50mm厚みのBT-HT355C-HF鋼板と60mm厚みのBT-HT440C-HF鋼 板を製造した。表3に鋼材の機械的性質を示す。両鋼とも規格を満 足する強度,伸び,降伏比,板厚方向特性,靭性が得られた。

3.1.3 溶接性

斜め y 形溶接割れ試験(JIS Z 3158)を行い,両鋼とも25 の予熱 で溶接割れは発生しなかった¹⁰。また,溶接熱影響部の最高硬さ試 験 JIS Z 3101)を行い,両鋼とも25 の予熱で最高硬さは300Hv未満 であった¹⁰。開発鋼の良好な溶接性が確認された。

3.2 溶接継手性能

3.2.1 溶接試験体

開発鋼を用いて3m長さの4面ボックス柱を作製した。スキンプ レートとダイヤフラムに同じ規格の開発鋼を用いて,BT-HT355C-HF柱(梁フランジはSN490B)とBT-HT440C-HF柱(梁フランジはBH-HT440C)の2種類の柱を作製した。

柱のダイヤフラム溶接には1パスのESWを,柱の角溶接には1パ スの2電極SAWを,柱と梁フランジの溶接には多パスのガスメタル アーク溶接 GMAW を適用した。ここでは,開発鋼に適合する新し い溶接材料¹¹⁾を用いた。表4に溶接条件を,図4に継手シャルピー

)

表 2	開発鋼の化学成分(mass %)
Chemical compos	sitions of developed steel plates (mass %

						1 1	,		
Steel	С	Si	Mn	Р	S	Others	HTUFF	Ceq	Pcm
BT-HT355C-HF	0.12	0.26	1.50	0.008	0.002	Nb,Ti	Treated	0.39	0.21
BT-HT440C-HF	0.10	0.16	1.56	0.006	0.002	Cu,Ni,Nb,V,Ti	Treated	0.39	0.23

Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14

Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B

mechanical properties of developed steer plates										
Steel	Thickness (mm)	Direction	Tensile properties 1/4 thickness position			Charpy propertiesThrough-thickne1/4 tickness positionproperties		ickness erties		
			Yield point	Tensile strength	Elonga- tiom	Yield ratio	$_{v}E_{_{0}}$ min/av.	Tensile strength	Reduction of area	
			(N/mm ²)	(N/mm ²)	(%)	(%)	(J)	(N/mm ²)	(%)	
BT-HT355C-HF	50	L	450	574	32	78	298/302	564,564,562	77,77,76	
		Т	451	579	26	78	220/252			
BT-HT440C-HF	60	L	468	610	31	77	251/254	607,615,610	69,74,75	
		Т	466	603	32	77	234/236			

表3 鋼板の機械的性質 Mechanical properties of developed steel plates

L : longitudinal, T : transverse

表4 4 面ボックス柱の溶接条件 Welding conditions of box columns

Steel for	Welding portion	Welding method	Welding conditions					
column	column		Current	Voltage	Speed	Heat input	Welding	
			(A)	(V)	(mm/min)	(kJ/mm)	material	
BT-HT355C-HF	Column diaphragm	ESW/single pass	380	51	14.3	81.4	YM-55HF	
BT-HT440C-HF	Column diaphragm	ESW/single pass	380	51	11.6	100.4	YM-55HF	
BT-HT355C-HF Column corner SAW/single pass		L 2100	36	230	41.0	Y-DLHF		
			T 1700	48			NSH-53HF	
BT-HT440C-HF	Column corner	SAW/single pass	L 2200	37	200	50.3	Y-DLHF	
			T 1800	48			NSH-53HF	
BT-HT355C-HF	Column-beam	GMAW/multi passes	380	40	220/450	2.0/4.0	YGW18/21HF	
BT-HT440C-HF	Column-beam	GMAW/multi passes	360	41	220/450	2.0/4.0	YGW18/21HF	

L: leading electrode, T: traling electrode

図4 4 面ボックス柱の継手シャルピー衝撃試験における試験片採取位置とノッチ位置 Positions of V-notches and specimens of Charpy impact tests in welded joints of box columns

衝撃試験における試験片採取位置とノッチ位置を示す。

3.2.2 継手性能

(1) 継手マクロ外観

BT-HT355C-HF柱を例として,図5にESW継手とSAW継手のマク ロ外観を示す。

(2) 継手靭性

図6に4面ボックス柱の継手靭性をシャルピー吸収エネルギーの 平均値で示す。2種類の柱のすべての継手において開発目標を満足 する良好な靭性が達成された。脆化が懸念されるESW継手とSAW 継手のFL(溶融線)とHAZ1(FLから1mm離れたHAZ)で,目標レベ ルの70Jを超える良好な靭性が狙い通りに達成された。適正な溶接 材料を用いることでWM(溶接金属部)の靭性も良好であった。

(3) 継手強度

ESW継手,SAW継手,GMAW継手の溶着金属引張試験とESW十 字継手引張試験を行い,2種類の柱のすべての継手において鋼材規 格を満たす十分な強度が得られた¹⁰。ESW十字継手引張試験の破断 位置は梁フランジ母材であった。

(4) 継手ミクロ組織

BT-HT440C-HF柱を例として,図7にESW継手のミクロ組織を, 図8にSAW継手のミクロ組織を示す。大入熱溶接を適用したにもか かわらず,両継手ともHTUFF効果によって溶融線近傍のHAZ組織が 顕著に微細化していることが確認された。BT-HT355C-HF柱につい ても同様であり,開発鋼の良好な大入熱溶接HAZ靭性は,この組織 微細化効果に起因して達成されたものと考えられる。

(a)Column diaphragm joint and Column-beam joint

(b)Column corner joint

図5 BT-HT355C-HF柱の継手マクロ外観 Welded joint macrostructure of BT-HT355C-HF column

図 6 4 面ボックス柱の継手靭性 Welded joint toughness of box columns

 $200\,\mu\,m$

 $200\,\mu\,m$

図 8 BT-HT440C-HF柱のSAW継手ミクロ組織(角溶接部のフランジ側HAZ) SAW joint microstructure of BT-HT440C-HF column(flange side HAZ of corner joint)

4. 結 言

HTUFFの適用と鋼成分の適正化によって,大入熱溶接に対応した 建築鉄骨用高HAZ靭性鋼を開発した。開発鋼(BT-HT355C-HF,BT-HT440C-HF)とこれに適合する溶接材料を組み合わせて作製した4 面ボックス柱の大入熱溶接継手おいて,0のシャルピー吸収エネ ルギーの平均値が70Jを超える良好な靭性を達成した。丸の内1丁 目1街区計画C棟(仮称)をはじめとする超高層建築物の4面ボック ス柱向けに,現在までに約6000トンの開発鋼を出荷した²⁾。高層建 築物における耐震安全性と高能率施工のニーズを満足する本開発鋼 の需要は,今後急速に増加すると考えられる。

参照文献

- 建築研究所:鉄骨梁端溶接接合部の脆性的破断防止ガイドライン・同解説 第1 版 東京,日本建築センター 2003 p 39
- 2) 稲田達夫 ほか:鉄構技術(STRUTEC) (7) ,35(2002)
- 3) 児島明彦 ほか:まてりあ 42(1) 67(2003)
- 4) 児島明彦 ほか:新日鉄技報 (380) ,33(2004)
- 5) 児島明彦 ほか:日本建築学会大会学術講演梗概集 .C-1 .2001 p. .761
- 6) 櫻井謙次 ほか:宮地技報 .18 53(2003)
- 7) 横山幸夫 ほか:鉄構技術(STRUTEC) (6) 45(2003)
- 8) 市川和利 ほか:溶接学会全国大会講演概要 69 2001 p.176
- 9) 中澤博志 ほか:溶接学会全国大会講演概要 71 2001 p 252
- 10)新日本製鐵(株)パンフレット:新日鐵のHTUFF steel 建築構造用高HAZ靭性鋼
- 11) 市川和利:CAMP-ISIJ .16 ,348(2003)