

www.nipponsteel.com

NIPPON STEEL CORPORATION

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111

SuperDyma[™] Catalog Series Materials U030en_01_201904f © 2019 NIPPON STEEL CORPORATION

SuperDyma™ Catalog Series Materials

NIPPON STEEL Developed Highly Corrosion-resistant Coated Steel Sheets, SuperDyma

SuperDyma is a new type of highly corrosion-resistant coated steel sheet with a coating composition consisting of zinc as the main substrate in combination with aluminum (about 11%), magnesium (about 3%) and a trace amount of silicon.

Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication.

Please refrain from unauthorized reproduction or copying of the contents of this publication. The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

Exceptional Resistance to Rust !

Not only rust resistant on flat surfaces
But also highly rust resistant on cut-end surfaces
In addition, extremely high alkaline resistance

The corrosion resistance of SuperDyma is enhanced by the composite effect of adding aluminum, magnesium and silicon to the conventional zinc coating. Silicon, among other elements, is highly effective in inhibiting corrosion when combined with Mg.

High Workability

 Strongly resistant to rust at bends and in cylindrically-drawn sections; fine finishes with fewer scratches after fabrication

Distinguished weldability and paintability

SuperDyma offers high coating adherence that can withstand severe fabricating processes. The coating has a high degree of hardness, thus offering excellent scratch resistance.

New Steel Materials Excellent in Value Analysis

 Reductions in cost and delivery time due to the elimination of post-coating and post-painting

Proposal to replace stainless steel and aluminum

In contrast to fabricated products using post-coated and post-painted steel sheets, the total cost and delivery time associated with fabricated products using SuperDyma can be greatly reduced. Furthermore, due to its resistance to red rust, SuperDyma can be used as a substitute material for stainless steel and aluminum products.

Contents

	2 4	Corrosion Mechanism Surface Treatments	
perDyma™	6 8	Mechanism of Corrosion Resistance Comparison with Conventional Hot-dip Zinc- coated Steel Sheets	
	10 12	Comparison with Post-coated Steel Sheets Comparison with Stainless Steel, Aluminum and GALVALUME STEEL SHEET	
	14 20	Excellent Quality Characteristics Chromate-free treatment of SuperDyma	
	23 24 25	Production Process Available Sizes	
	26 28 29	NIPPON STEEL Standards Dimensional Tolerances ASTM A 1046/A 1046M-06 (Excernts from ASTM Standards)	SuperDyma™ ™ ***
hers	32 34	An Array of Approvals Packaging and Marking	∽ SuperDyma™ ≧
	35 35	Precautions in Use Guide to Ordering	TERIAL
	38	"Super Fabricated Products" Employing SuperDyma of NIPPON STEEL	SuperDyma ™
dex	40	No Hesitation in Selection! Matrix for Selecting Super Fabricated Products	R.
oducts	42 46 48 50	Building Construction Civil Engineering Housing Structural Members Agriculture and Livestock Farming	SuperDyma™ ₽ ₽
	52	Highways and Railways	SuperDyma™

"SUPERDYMA" is a registered trade name of NIPPON STEEL.

Corrosion Mechanism

Why Does Steel Rust?

Twenty-one percent of the air is oxygen. That is why it is virtually impossible for any metal to exist in pure form. Metals combine with atmospheric oxygen to form oxides. Iron in its natural state exists as iron ore, an oxide, and steel is produced by using coke to reduce the iron ore. The resulting steel tends to react again with the oxygen in the air to cause oxidation—this oxidation of steel is a phenomenon called "rusting."

_

SuperDyma^{*}

Corrosion Mechanism

Iron (steel) is composed of Fe and electrons (e-). When iron is exposed to rain and water, moisture is adsorbed onto iron's surface.

Because moisture on iron's surface is exposed to the atmosphere, oxygen in the atmosphere is absorbed into moisture.

Structurally/Electrically: Stable

Because moisture reacts chemically with oxygen, moisture extracts the necessary electrons from the iron to produce OH⁻ anions in the moisture. The iron (Fe) loses these electrons, transforms into cations of Fe³⁺ and dissolves into the moisture.

History of Metallic Coatings

In order to protect steel from rusting, metallic coatings serve as "makeup" for the surface of steel material. The most typical metallic coating is galvanizing, or zinc coating, and goes back to the early 1740s. This was when the high-volume production of zinc ingots became possible in the United Kingdom owing to improvements in zinc smelting process and the galvanizing method was invented in France. Steel by nature tends to return to an oxide in the air. An iron oxide film forms on the steel surface before the steel reaches the coating process. This makes it difficult to deposit molten zinc on the surface. To solve this problem, a flux (salt) was applied to the surface before the steel materials were immersed in molten zinc. This hot-dip galvanizing (flux) method was invented in 1837 and is the archetype of today's hot-dip continuous galvanizing.

The flux method is suited to sheet-by-sheet galvanizing, but does not lend itself to continuous production. A new method was devised in 1931 whereby cold-rolled coils were continuously heated at high temperature and reduced by hydrogen to clean the surfaces. This innovative technique is known as continuous hot-dip galvanizing, or the Sendzimir process. NIPPON STEEL introduced this method from 1953 to 1954.

(Citation from Nippon Steel Monthly, June 2003: The Genesis of Product Making $-{\rm Efforts}$ to Combat Rust)

Metallic coating is deposited on the surface of steel sheets when immersed in a solution of molten coating metal. This method is adopted for coating steel sheets intended for applications such as automotive steel sheets and building materials that are used in highly corrosive environments.

(Citation from *Nippon Steel Monthly*, June 2003: The Genesis of Product Making—Efforts to Combat Rust)

Fe³⁺ + 3OH⁻ → Fe(OH)₃

OH⁻ and Fe³⁺ bond together to generate Fe(OH)₃, and then moisture (H₂O) runs out to generate rust (Fe₂O₃). This is the mechanism whereby rust occurs.

Accordingly, iron is given **surface treatments** as a means to prevent rust from developing.

The occurrence of rust can be prevented by forming a barrier on the surface of the iron and suppressing the chemical reaction that causes rust.

ERIAL

 \geq

 \triangleright

-

SuperDyma[™]

Corrosion Mechanism

Surface Treatments

 \geq

 \bowtie

—

R

_

Surface treatments are roughly classified into two types: coating and painting.

There are two kinds of coating: pre-coating in which the steel is coated prior to fabrication, and post-coating in which the coating is applied afterwards. Further coating is classified into two: electro-coating whereby electrolytic coating is provided, and hot-dip coating whereby the steel is dipped into a molten coating material.

Most steel sheets are put on the market after receiving treatments for corrosion resistance and decorativeness.

Annual Corrosion Rate

The annual corrosion rates for iron and zinc are compared at the right. In rural environments, while iron oxidizes to a depth of 20 microns, zinc demonstrates much better corrosion resistance by oxidizing to only 1.5 microns. Utilizing this superior performance, zinc is an effective material for surface treatment.

Service Life of Steel

(thickness: 3.2 mm; Z27) is shown below.

ded with a 19-micron coating of zinc. However, once the zinc coating is lost, the steel still has a service life of three years, for a total service life of 15 years. By providing coatings with higher corrosion resistance, the service life of steel as a whole can be prolonged.

Mechanism of Corrosion Resistance

Corrosion Protection Mechanism on Flat Surfaces

SuperDyma is produced by coating aluminum, magnesium and silicon to the conventional zinc coating, thereby using the composite effect of these added elements to derive its high corrosion resistance. That is, SuperDyma's capacity to protect against corrosion is enhanced by adding silicon and magnesium, whose beneficial effect is demonstrated by NIPPON STEEL's hot-dip Zn-5%Al alloy coated sheets and DYMAZINC™ (Zn-Mg alloy-coated steel), to the conventional additive aluminum. Silicon is effective in improving the workability of coatings containing aluminum and at the same time enhances corrosion suppression through composite action with magnesium.

Corrosion Resistance of Flat Surfaces

The corrosion resistance of SuperDyma (assessed by salt-spray tests to determine corrosion rate) is extremely high - about 30 times that of hot-dip Zn-coated sheets and about 5 times that of hot-dip Zn-5%Aℓ alloy-coated sheets.

Corrosion Protection Mechanism on Flat Surfaces

Coatings are provided in order to improve corrosion resistance

A protective film is formed on coatings

after corrosion of coating layer begins.

The performance of this film is impor-

tant for improving the corrosion resis-

Coatings form a protective film to maintain corrosion resistance

Coatings form a protective film to maintain corrosion resistance. But, if the formed protective film is coarse, moisture and oxygen will penetrate to the base metal, causing the onset of corrosion.

However, if a tight protective film is formed, corrosion can be suppressed.

Corrosion Protection Mechanism on Cut-end Surfaces and at Welded Sections

Because the cut-end surface of SyperDyma's base metal is exposed, red rust sometimes occurs during the initial stage of application.

However, the composition of the coating around the cut-end surface is such that it leeches out to form a tight protective film composed mainly of zinc hydroxide (Zn(OH)₂), basic zinc chloride (ZnCℓ₂·4Zn(OH)₂) and magnesium hydroxide (Mg(OH)₂). This tight film covers the cut-end surface within several months. It is low in electric conductivity and effective in suppressing the development of corrosion at the cut-end surface. Further, the silicon contained in the coating acts to accelerate the formation of the protective film described above.

 \geq

 A

R

_

 \triangleright

_

SuperDyma^{**}

tance of flat surfaces.

Coating layer

Iron

\geq \triangleright -R _ \triangleright _

SuperDyma

Mechanism of Corrosion Resistance

Comparison with Conventional Hot-dip Zinc-coated Sheets

Corrosion Resistance of Flat Surfaces

Conventional hot-dip Zn-coated steel sheets also produce a protective film. However, this film is rough in texture, allowing the penetration of moisture and oxygen and a resultant growth of corrosion.

By contrast, the dense protective film formed on the surface of SuperDyma arrests the corrosion process and stabilizes corrosion behavior.

Corrosion Resistance of Flat Surfaces (Salt Spray Tests)

Test time	Before test	500 hours	1,000 hours	2,000 hours
SuperDyma Thickness: 3.2 mm Coating mass symbol: K12 Special chromate treatment				
				30mm

SuperDyma^{**}

 \geq

 $^{
m A}$

—

 \mathbb{R}

_

 \triangleright

_

Corrosion Resistance of Flat Surfaces (Results of JASO)

Specimen	Тур	e of coating	Coating mass	Surface treatment	Thickness	Test conditions:		
Hot-dip Zn-coated sheet	Zn		Z27			Repetition of ① to ③ as a cycle ① Salt spray: 2 hours (5% NaC L. 35°C)		
SuperDyma	Zn-11%Al-3%Mg-0.2%Si		K18	Special chromate	1.6mm			
GALVALUME STEEL SHEET	Zn-55%	5Al	AZ150			② Drying: 4 hours (60°C)		
						③ Wetting: 2 hours (50°C, humidity 95% or more)		
			90 cycle	s		180 cycles		
Hot-dip Zn-coated sheet								
SuperDyma								
GALVALUME STEEL SHEET								

Corrosion Resistance at Cut-end Surfaces

SuperDyma has superb corrosion resistance at its cut-end surfaces.

Corrosion Resistance at Cut-end Surfaces (Results of Salt Spray Tests)

Specimen conditions Thickness: 3.2 mm Surface treatment: No treatment	Salt spray test: 500 hours
Hot-dip Zn-coated sheet Coating mass: 100 g/m ² /side	
SuperDyma Coating mass: 90 g/m²/side	(· · · · · · · · · · · · · · · · · · ·
GALVALUME STEEL SHEET (Laboratory trial-made sample) Coating mass: 90 g/m ² /side	

- corrosion in the long run.
- comes quite inconspicuous.

(Results of Outdoor Exposure Tests)

\geq \bowtie \neg \mathbb{R} _ A _

SuperDyma^{**}

Comparison with Conventional Hot-dip Zinc-coated She ets

Comparison with Post-coated Steel Sheets

Corrosion Resistance at Flat Surfaces

In the case of fabricated post-coated products with heavy zinc coatings of 550 g/m² per side (HDZ55, according to JIS H8641), the protective film has a coarse texture that over time allows corrosion to progress until red rust forms.

SuperDyma even with a coating of only 90 g/m² per side (coating mass symbol: K18) is quite free of red rust, thus offering corrosion resistance equal or superior to that of HDZ55.

Corrosion Resistance at Flat Surfaces (Results of Salt Spray Tests)					
Test time	1,000 hours	2,000 hours			
SuperDyma K18 (Thickness: 1.6 mm)					
Post-coated sheet HDZ55 (Thickness: 6.0 mm)					

Corrosion Resistance at Cut-end Surfaces

The results of a 2,000-hour salt spray test on SuperDyma K18 show that red rust does not occur on cut-end surfaces. (The specimen installation angle conforms to JIS Z2371 "Methods of salt spray testing".)

Corrosion Resistance at Cut-end Surfaces (Results of Salt Spray Tests)

	Thickness	1,000 hou
SuperDyma	1.6mm	
K18	3.2mm	
Post-coated sheet	1.2mm	
HDZ55	6.0mm	

Repair Coating at Cut-end Surfaces (Results of Salt Spray Tests)

pecimen conditions uperDyma hickness: 4.5 mm, 6.0 mm, 9.0mm coating mass: K18 urface treatment: Special chromate treatment (Y treatment)					
SuperDym	na K18 (Repair-coated for cut-er				
Thickness: 4.5 mm	Thickness: 6.0 mn				

Corrosion-protection Treatment at Cut-end Surfaces

Specimen conditions SuperDyma Thickness: 3.2 mm Coating mass: K18 Surface treatment: Special chromate treatment (Y treatment) Corrosion-protection agent Breton R143-C (Product of Sugimura Chemical Industry Co., Ltd.)				
Exposure period	Coating of corrosion-protection agent			
1 week		pa.		
1 month				

ΜA

-

m

R

 \triangleright

_

Comparison

with

SuperDyma[™]

r coat Coat SD Spray Just of Nippon Paint Corrosion Protection Coating Co., Ltd.) nd surface; test time: 2,000 hours) m Thickness: 9.0 mm Coating Co., Ltd.)

MATERIAL

SuperDyma[™]

Comparison with Post-coated Steel Sheets

SuperDyma[™]

Comparison with Stainless Steel, Aluminum and GALVALUME STEEL SHEET

It is true that stainless steel offers superb corrosion resistance thanks to the passivated film that forms on its surface. However, it has the disadvantage of being vulnerable to corrosion caused by salt. Meanwhile, the protective film that forms on the surface of SuperDyma provides a strong and effective barrier against salt corrosion. In terms of resistance to pitting corrosion and other properties that affect the "service life of steel" and are of key importance when steel is used as a structural material, stainless steel is superior. SuperDyma, on the other hand, is far more advantageous in applications such as panel surfaces where "resistance to red rust" is paramount.

The exceptional corrosion resistance of aluminum also derives from the passivated film on its surface. GALVALUME STEEL SHEET, with an alloy coating that is 55% aluminum, demonstrates a similar effectiveness. However, aluminum exhibits poor alkali resistance.

Corrosion Resistance of SuperDyma and Stainless Steel at Flat Surfaces (Results of JASO) Test conditions: Cyclic corrosion test (JASO M609) Repetition of ① to ③ as a cycle ① Salt spray: 2 hours (5% NaCl, 35°C) ② Drying: 4 hours (60°C, humidity 30%) ③ High-temperature wetting: 2 hours (50°C, humidity 98%) 30 cycles 60 cycles

Corrosion Resistance of SuperDyma and GALVALUME STEEL SHEET at Flat Surfaces (Results of JASO)

Specimen		Type of coating	Coating mass	Thickness
SuperDyma		Zn-11%Al-3%Mg-0.2%Si	n-11%Al-3%Mg-0.2%Si K18	
GALVALUME STEEL SH	IEET	Zn-55%Al	AZ150	1.6mm
Test conditions: Cyclic corrosion test (JASO M609-91 method) Repetition of ① to ③ as a cycle ① Salt spray: 2 hours (5% NaCℓ, 35°C) ② Drying: 4 hours (60° ③ Wetting: 2 hours (50°C, humidity 95% or more)				nod) (60°C)
	90 cycles		180 cycles	
SuperDyma				
GALVALUME STEEL SHEET				

Corrosion Resistance at Cut-end Surfaces
(Results of Salt Spray Tests)

(*) GALVALUME STEEL SHEET is a product sold and registered trade mark in Japan

Under alkaline conditions with a relatively high pH, GALVALUME STEEL SHEET corrodes very guickly while SuperDyma shows less susceptibility to corrosion and remains virtually intact. In alkaline environments (cattle and compost sheds, mortar and concrete), the quality of SuperDyma remains high.

 (g/m^2)

0.55

Cor

 \geq

 \triangleright

-

 $\overline{\mathcal{A}}$

_

 \triangleright

_

Under severer conditions requiring the immersion of steel sheets in an alkaline solution with a strong pH of 12.5, ordinary metalliccoated steel sheets experience rapid corrosion over a period of 100 hours. But, SuperDyma keeps the corrosion to a minimum and remains stable after 300 hours.

\geq \triangleright m R \triangleright _

SuperDyma

Excellent Quality Characteristics 1

Corrosion Resistance of Bends

• SuperDyma shows the same excellent corrosion resistance at bends as it does on flat surfaces.

Corrosion Resistance of 1t Bends (Results of Salt Spray Tests)					
Specimen conditions Thickness: 0.8 mm Surface treatment: No treatment Specimen processing: 1t bending	Salt spray test: 1,000 hours				
Hot-dip Zn-coated sheet Coating mass: 135 g/m²/side					
SuperDyma Coating mass: 90 g/m²/side					
GALVALUME STEEL SHEET Coating mass: 75 g/m ² /side	Low 2 2 wash a last of				

• SuperDyma K18 shows higher corrosion resistance at bends than post-coated HDZ55.

Corrosion Resistance of 1t Bends (Results of Salt Spray Tests)

Test time	1,000 hours	2,000 hours
SuperDyma K18 (Thickness: 1.6 mm)		
Post-coated sheet HDZ55 (Thickness: 3.2 mm)		

Note: Post-coated sheet was coated after bending

Corrosion Resistance of Cylindrically-drawn Sections

• SuperDyma shows the same excellent corrosion resistance in cylindrically-drawn areas as it does on flat surfaces.

Corrosion Resistance of Cylindrically-drawn Sections (Results of Cyclic Corrosion Tests)

Specimen	Thickness	Coating mass/side	Chromate mass/side	Reference	Corrosion Resistance Tests
SuperDyma	1.0t	95 mg/m ²	40 mg/m ²	Trial-made product for practical use	Repetition of ① to ③ as a cycle
Hot-dip Zn-coated sheet	(mm)	130 mg/m ²	15 mg/m ²	Product for practical use	1) Salt spray: 2 hours (5% NaCl, 35°C)
Deep-drawing test condit	tions •Pu •Dra	nch dia. 50∲ ●Die s awing ratio 2.0 ●Bla	shoulder R10 ●Puncl nk holding pressure 0	h shoulder R10 0.5 tons	 (2) Drying: 4 hours (60°C, humidity 30%) (3) Wetting: 2 hours (50°C, humidity 98%)
		Before to	est	30 cycles	60 cycles
SuperDyma			9		
Hot-dip Zn-coated shee	et		3		

Scratch Resistance

• The coating layer of SuperDyma is hard, thus offering high scratch resistance.

 \geq

 \triangleright

 \square

 \mathbb{R}

_

 \bowtie

-

Excellent

Quality

Characteristics

SuperDyma[™]

 \geq \triangleright \neg \square \mathcal{P} _ -

SuperDyma

Excellent Quality Characteristics

Excellent Quality Characteristics 2

Weldability

• As thin-coat SuperDyma exhibits high corrosion resistance, impediments brought about by heavier coating thicknesses are not presented.

Circumferential fillet welding

Coated sheet

Round bar

• A variety of welding methods (lapped fillet arc welding, spot welding) can be applied to SuperDyma.

(Note)

In the case of arc welding, while the weld bead will generally show shrinkage, large internal tension force is at work on the base metal in the vicinity of the bead, depending on the structure of the members to be welded.(Example: Circumferential fillet welding, see figure at right).

When coated steel sheets such as SuperDyma are applied in such welding, there are cases in which the base metal in the vicinity of the bead may crack*, and thus prior confirmation is recommended before application.

*Liquid metal embrittlement phenomenon: Embrittlement caused by penetration into the grain boundary of iron upon which tensile stress is at work. Also called zinc embrittlement.

Corrosion Resistance of Spot Welds

• In the case of SuperDyma, the protective film covers the weld as the cycle increases, thus suppressing the development of red rust.

Corrosion Resista	Corrosion Resistance of Spot Welds (Results of Salt Spray Tests)							
Specimen conditions	Thickness: 0 Coating mas Post-treatme	.8 mm s/side: 90 g/m² ent: Y treatment	Corrosion Resistance Tests Repetition of ① to ③ as a ① Salt spray: 4 hours (5% ② Drying: 2 hours (60°C, ③ High-temperature weth			as a cycle (5% NaCl, 35°C C, humidity 309 vetting: 2 hours	C) %) (50°C, humidity 98%)	
Welding conditions	Pressure	Squeeze	Up slope	Welding time	Hold	Cooling water	Current value	
	1,860 N	30 cycles	3 cycles	7 cycles	25 cycles	2ℓ/min	13 KA	
	Electrode app	lied: Obara DHO-typ	be, Preliminary spot	tting: 20 dots				
Test time		3 су	cles		6 cycles		1	9 cycles
SuperDym	a			1	~~~			~

Corrosion Resistance of Repaired Welds

• Repaired welds of SuperDyma that use zinc-rich paint showed great improved corrosion resistance. It is presumed that the improved corrosion resistance is a result of the corrosion-inhibiting action of the protective film, peculiar to SuperDyma, at work on the repaired welds.

A _ m R _ Þ _

 \geq

SuperDyma

Excellent Quality Characteristics

Excellent Quality Characteristics 3

Paintability

- Super Dyma has excellent pre-treatability for painting.
- Painted Super Dyma has superb corrosion resistance, with little susceptibility to corrosion-induced rises of the coating film in cut-end surfaces and cross-cut parts.

Corrosion Potential (Contact Corrosion with Different Metals)

- A certain metal comes into contact with another metal, where corrosion is accelerated - This phenomenon is called the contact corrosion with different metals.
- In case of contact of two kinds of metals, the metal having low electric potential (less precious metal) causes corrosion. (Refer to the table below: for example, in case when iron contacts with zinc, zinc corrodes.)

Standard Electrode Electric Potential (Hydrogen Electrode as Parameter)

	Metal	Electric potential (V) (25°C)
\uparrow	Hydrogen	0.000
cious	Nickel	-0.250
Pred	Iron	-0.440
sno	Zinc	-0.763
-ess oreci	Aluminum	-1.662
-v-	Magnesium	-2.363

- SuperDyma, which contains magnesium and shows inferior potential attributable to MgZn2 immediately after immersion, attains potential equal to that of other zinc-system coated sheets in one hour (see the figure below). It is conjectured that anodic dissolution of the coating is arrested under the influence of the magnesium-bearing hydrated film.
- This indicates that when SuperDyma comes into contact with different metals, the result ing phenomenon of contact corrosion attributable to corrosion potential is approximately the same as that with ordinary zinc-system coated sheets.

- •Because SuperDyma has higher corrosion resistance than conventional zinc-coated sheets, the degree of corrosion due to contact with different metals seems less.
- However, the phenomenon of contact corrosion occurs, and accordingly when bolts, rivets and other members are used in contact with SuperDyma, it is recommended to use those bolts and rivets having the electric potential equal to that of Super-Dyma (post-coated and other similar products) or provided with coating treatment.

Results of 3-year Exposure of Unpainted SuperDyma in Okinawa

Reference

When the results of 3-year exposure of SuperDyma and other test specimens are examined, red rust does not occur in Super-Dyma, showing fine surface appearance. Further, occurrence of white rust is less for SuperDyma, compared to hot-dip Zn-coated sheets.

Corrosion loss of SuperDyma after removal of white rust is about 25% that of hot-dip Zn-coated sheets.

Unit Weight												
Symbol of coat- ing mass Standard thickness (mm)	K06	K08	K10	K12	K14	K18	K20	K22	K25	K27	K35	K45
0.27	2.210	2.240	2.270	2.303	2.323	2.364	2.405	2.425	2.470	2.501	2.578	2.685
0.30	2.445	2.475	2.505	2.538	2.558	2.599	2.640	2.660	2.705	2.736	2.813	2.920
0.40	3.230	3.260	3.290	3.323	3.343	3.384	3.425	3.445	3.490	3.521	3.598	3.705
0.50	4.015	4.045	4.075	4.108	4.128	4.169	4.210	4.230	4.275	4.306	4.383	4.490
0.60	4.800	4.830	4.860	4.893	4.913	4.954	4.995	5.015	5.060	5.091	5.168	5.275
0.70	5.585	5.615	5.645	5.678	5.698	5.739	5.780	5.800	5.845	5.876	5.953	6.060
0.80	6.370	6.400	6.430	6.463	6.483	6.524	6.565	6.585	6.630	6.661	6.738	6.845
0.90	7.155	7.185	7.215	7.248	7.268	7.309	7.350	7.370	7.415	7.446	7.523	7.630
1.0	7.940	7.970	8.000	8.033	8.053	8.094	8.135	8.155	8.200	8.231	8.308	8.415
1.2	9.510	9.540	9.570	9.603	9.623	9.664	9.705	9.725	9.770	9.801	9.878	9.985
1.6	12.65	12.68	12.71	12.74	12.763	12.80	12.85	12.87	12.91	12.94	13.02	13.13
2.0	15.79	15.82	15.85	15.88	15.903	15.94	15.99	16.01	16.05	16.08	16.16	16.27
2.3	18.15	18.18	18.21	18.24	18.258	18.30	18.34	18.36	18.41	18.44	18.51	18.62
3.2	25.21	25.24	25.27	25.30	25.323	25.36	25.41	25.43	25.47	25.50	25.58	25.69
4.5	35.42	35.45	35.48	35.51	35.528	35.57	35.61	35.63	35.68	35.71	35.78	35.89
6.0	47.19	47.22	47.25	47.28	47.303	47.34	47.39	47.41	47.45	47.48	47.56	47.67
9.0	70.74	70.77	70.80	70.83	70.853	70.89	70.94	70.96	71.00	71.03	71.11	71.22
Note: Unit mass of base sheet (kg/m ²)=Base sheet's basic mass×Thickness (mm) Base sheet's basic mass=7.85 (kg/mm·m ²) Unit mass of sheet (kg/m ²)=Base sheet's unit mass+Coating mass constant												
Symbol of coating mass	K06	K08	K10	K12	K14	K18	K20	K22	K25	K27	K35	K45
Coating mass constant	0.090	0.120	0.150	0.183	0.203	0.244	0.285	0.305	0.350	0.381	0.458	0.565

SuperDyma^{*}

 \geq

 \triangleright

ecimen	Coating mass (one side)	Post-treatment
	90 g/m²	No treatment
ated sheet	135 g/m ²	No treatment

\geq \triangleright _ R _ \triangleright _

SuperDyma

Refer ence

SuperDyma[™]

Chromate-free treatment of SuperDyma 1

Lubricity **Kinetic friction coefficient** Conceptual diagram of the kinetic friction coefficient measuring system Sliding contact: 10 mm ϕ SUS ball tip Traveling speed: 150 mm/min Load: 1.0 N Oiling: No oiling or rust-preventive oil Load cell Load: 1.0 N (Sliding resisting force)

Lubricating Property (zinc-coated plane sheet drawing test)

Sliding property

ree	
trec	C
ut m	Sa
ent	E
of	
SuperDyma	ratio of rust occurrense (%)

Electric Conductivity				
Surface insulation resista	ince test (JIS C 2550)			
Conceptual diagram of the surface insulation resistance measuring system				
Test voltage: 0.5 V Current measuring range: $0 \sim 1 \text{ A}$ Surface area of contact: $1 \text{ cm}^2 \times 10$ Standard test pressure: $2 \text{ N/mm}^2\pm 5 \%$	Rs=A (1/i-1) Rs : Surface insulation resistance value (Ω·cm ² /sheet) A : Total area of contacts =10(cm ²) i : Average value of current (A)	(comm		
Approx 1	Ω 5Ω 5Ω 5Ω	(tribolo) pro		
Battery Approx 30 Ω Drill Coated Steel sheet	Contact	(sp chro		

 \geq

 \triangleright

—

 \square

R

_

 \triangleright

_

Chromat

Ð

SuperDyma^{**}

SuperDyma

Chrom ıate -free treatment of SuperDym 0

SuperDyma™

Chromate-free treatment of SuperDyma 2

Conductivity (grounding property)

LORESTA (4-probe type)

Conceptual diagram showing the contact resistance (LORESTA 4-probe type) measuring system

Tester: LORESTA MP-type of Dia Instrument Co., Ltd. Test current: $1\mu A \sim 100 \text{ mA}$ Resistance measuring range: $10^6 \sim 10^{\text{-2}}\,\Omega$ Surface area of contacts: $2mm\phi \times 4$ Interpole distance 5 mm Contact load: 1.5 N

Evaluation: Continuity rate (%) = number of continuity*/20 tests ×100 * continuity = less than 1 m Ω

An example of the contact resistance

SuperDyma^{**}

 \geq

 \triangleright

—

R

_

 \triangleright

_

mo

Coating Property Coat adherence

An example of paint adhesion test results

Coating con	ditions							
Type of	coating material	Т	hickness of coat	Baking o	conditions			
Melarr	nine alkyd type		20 <i>µ</i> m	120°C × 20min				
Sur	face treatment		QN QI		QFK	Y		
Drimon	Cross-cut tes	t	O		O		\bigcirc	
Filliary	Erichsen test		0		0		0	
Te	sting method		Cross-cut test: After cross-cutting at Erichsen test: After extruding 7 mm, p			at 1 mm intervals, peeling with adhesive tap , peeling with adhesive tape.		
	Judgment		\bigcirc No change \bigcirc Slight peeling $ riangle$ Considerable peeling $ imes$ Complete peeling					

Primary: Evaluation after top coating.

Coating property varies according to the type of coating material used and the method of coating employed. So, please make sure to check beforehand with the coating material to be used.

Please also refrain from applying zinc phosphate for under-treating as it dissolves the coating film in some cases. (Please use untreated substrates which are easy to produce zinc phosphate film.)

SuperDyma™

Welding of SuperDyma

A variety of welding methods (arc welding, spot welding, etc.) can be applied to SuperDyma by adjusting the welding conditions.

Welding-applicable Coating Mass

A variety of welding methods can be applied to SuperDyma with coating mass symbols from K06 to K45. Meanwhile, for coated sheets with a coating mass symbol greater than K27, apply welding after decreasing or after reducing the coating thickness to the equivalent of K27 or under.

Note:

In the case of arc welding, there are cases in which the base metal in the vicinity of the bead may crack depending on the welding conditions, and thus prior confirmation is recommended before application. (For details, refer to note on page 16.)

Recommended Welding Conditions Arc Welding

1 Welding machine: Use CO² or MAG welding machines

The use of inverter- or pulse-type power sources that are available on the market allows for the suppression of sputtering and the prevention of burn-through.

2 Welding wire and shield gas:

Application of the conditions listed in the following table for welding wire and shield gas is recommended.

Welding machine	Kind of wire	
CO ² welder	JIS Z 3312 YGW14 equivalents	
MAG welder	JIS Z 3312 YGW17 equivalents	80%

Spot Welding

It is necessary that the optimum conditions for spot welding be determined according to the plate thickness. For example, when spot welding coated sheets 3.2 mm in thickness, it is recommended that the electrode and welding conditions (welding pressure, welding time, welding current) shown in the following table be applied.

Ctool aboat	Spot welding	Electrode			Welding	Welding	Welding		
Steer Sheet	machine	Outside diameter (D)	Tip shape	Size	pressure (kN)	Sq.T	W.T	Ho.T	(kA)
Plate thickness	1 φ AC, 150kVA	φ25	CR (R75)	φ11	8	30	65	35	$14.0 \sim 16.5$
(For details, refer to th	he catalog under Supe	rdyma-Welding.)							

(Reference) Assessment of Welds

Welding is applied under the above-mentioned conditions, and it has been confirmed that there are no problems with regard to product quality vis-à-vis weld strength, internal weld conditions or others.

Specifications: NSDH400; Plate thickness: 3.2 mm; Coating mass symbol: K27 Strength of arc-welded section Internal condition of (butt weld joint tensile test) arc-welded section

Fracture condition

Sectional microstructure

SuperDyma Catalog

Shield gas CO² argon + 20% CO2

Internal condition of spot-welded section

\geq \triangleright _ R Þ _

SuperDyma

Welding of SuperDyma

SuperDyma™

Production Process

Available Sizes

SuperDyma Catalog

\mathcal{R} _ -SuperDyma

 \geq

 \bowtie

 \neg

Available Sizes

SuperDyma Catalog

NIPPON STEEL Standards

Specifications

Kinds and Symbols

Thicknesses from 0.27 mm to 9.0 mm are available.

The kinds of plates/cut sheets and coils using hot-rolled base sheets (HR sheets) are as shown in Table 1-1, and those using cold-rolled base sheets (CR sheets) in Table 1-2.

Table 1-1 Kinds and Symbols (HR Sheets)							
Symbol of kinds	Nominal thickness (mm)	Application					
NSDHC	$1.60 \leq t \leq 9.00$	For commercial use					
NSDHP1	1.60 ≦ t ≦ 9.00	For drawing use-1					
NSDHP2	1.60 ≦ t ≦ 9.00	For drawing use-2					
NSDH340	$1.60 \leq t \leq 9.00$						
NSDH400	$1.60 \leq t \leq 9.00$						
NSDH440	$1.60 \leq t \leq 9.00$	For structural use					
NSDH490	1.60 ≦ t ≦ 9.00						
NSDH540	$1.60 \leq t \leq 9.00$						

Note: Nominal thicknesses other than those given in Table 1-1 may be agreed upon between the parties involved with deliveries.

Table 1-2 Kinds and Symbols (CR Sheets)

Application	Nominal thickness (mm)	ymbol of kinds
For commercial use	$0.27 \leq t \leq 2.30$	NSDCC
For commercial use, hard class	0.27≦t≦1.00	NSDCH
For drawing use-1	$0.40 \leq t \leq 2.30$	NSDCD1
For drawing use-2	$0.40 \leq t \leq 2.30$	NSDCD2
For drawing use-3	$0.60 \leq t \leq 2.30$	NSDCD3
	$0.27 \leq t \leq 2.30$	NSDC340
	$0.27 \leq t \leq 2.30$	NSDC400
For structural use	$0.27 \leq t \leq 2.30$	NSDC440
	$0.27 \leq t \leq 2.30$	NSDC490
	$0.27 \le t \le 2.00$	NSDC570

Note: 1. NSCD3 sheets and coils, when non-aging property is to be guaranteed according to the specifications of the orderer, letter "N" shall be affixed to the end of the symbol of the kind: namely, NSDCD3N.

2. Nominal thicknesses other than those given in Table 1-2 may be agreed upon between the parties involved with deliveries.

3. Prior consultation is requested for every lot of orders for NSDCH and NSDC570 products.

Skin-pass Treatment

The skin-pass treatment for achieving a smooth surface may be specified in the order.

Coating Mass

Coating symbol and mass are as shown in Table 2.

Table 2 Minimum Coating Mass and Coating Mass Symbols of Differentially Zinc-coated Sheets (unit: g/m²)

Symbol of coating mass	Average minimum coat- ing mass in triple-spot test on both sides	Minimum coating mass in single spot on both sides
K06	60	51
K08	80	68
K10	100	85
K12	120	102
K14	140	119
K18	180	153
K20	200	170
K22	220	187
K25	250	213
K27	275	234
K35	350	298
K45	450	383

Note: Maximum coating mass of Zn coating may be agreed upon between the parties involved with deliveries. For K06 and K45, please consult us.

Chemical Treatment

The kind and symbol of chemical treatment for plates/cut sheets and coils are as shown in Table 3.

Table 3 Kinds and Symbols of Chemical Treatment

- ··· · · · · · · · · · · · · · · · · ·		
Kind of treatment	Symbol	Reference
No treatment	Μ	-
Special chromate treatment	Y	-
Corrosion resistant chromate treatment	E	-
Chromata fraa traatmant	QN	Commercial use
Ginomale-nee freatment	QFK	Tribological property

Note: 1) Kinds of chemical treatments not shown in Table 3 may be agreed upon between the parties involved with deliveries. 2) For more details, please consult us.

Oiling

The kind and symbol of oiling for plates/cut sheets and coils are as shown in Table 4.

Table 4 Kinds and Symbols of Oiling

Kinds of oiling	Symbol
Heavy oiling	Н
Ordinary oiling	N
Thin oiling	L
Non-oiling	Х

Note: Kinds of oiling not shown in Table 4 may be agreed upon between the parties involved with deliveries.

Mechanical Properties

Yield Point, Tensile Strength, Elongation and Non-aging Property

Yield point, tensile strength, elongation and non-aging property (in the case of using CR base sheets) of plates/cut sheets and coils are as shown in Tables 5 and 6.

Table 5 Yield Point, Tensile Strength and Elongation (HR Base Sheets)

Symbol of kind	Yield point Tensile strength (N/mm ²) (N/mm ²)	-	Elongation (%)					
		(N/mm ²)	Nominal thickness (mm)					Specimen
			$1.6 \le t < 2.0$	$2.0{\leq}t{<}2.5$	$2.5 \leq t < 3.2$	$3.2 \leq t < 4.0$	$4.0 \leq t \leq 6.0$	
NSDHC	-	-	-	-	-	-	-	
NSDHP1	-	270 ≦	34≦	35≦	35≦	36≦	36≦	
NSDHP2	-	270≦	-	38≦	38≦	39≦	39≦	
NSDH340	245≦	340 ≦	20≦	20≦	20≦	20≦	20≦	JIS No. 5,
NSDH400	295 ≦	400 ≦	18≦	18≦	18≦	18≦	18≦	direction
NSDH440	335≦	440≦	18≦	18≦	18≦	18≦	18≦	
NSDH490	365 ≦	490 ≦	16≦	16≦	16≦	16≦	16≦	
NSDH540	400≦	540 ≦	16≦	16≦	16≦	16≦	16≦	

Table 6 Yield Point, Tensile Strength and Elongation (CR Base Sheets)

······································								
		Elongation (%)						
Symbol of kind	(N/mm ²)	(N/mm ²)		Nominal thickness (mm)				
ų	(19/11111)	(19/11111)	0.25≦t<0.40	0.40≦t<0.60	0.60≦t<1.00	1.00≦t<1.60	1.60≦t≦2.30	
NSDCC	-	-	-	-	-	-	-	
NSDCH	-	-	-	-	-	-	-	
NSDCD1	-	270≦	-	30≦	33≦	36≦	38≦	
NSDCD2	-	270≦	-	36≦	38≦	39≦	40≦	
NSDCD3	-	270≦	-	38≦	40≦	41 ≦	42≦	JIS No. 5,
NSDC340	245≦	340≦	20≦	20≦	20≦	20≦	20≦	direction
NSDC400	295 ≦	400≦	18≦	18≦	18≦	18≦	18≦	
NSDC440	335≦	440≦	18≦	18≦	18≦	18≦	18≦	
NSDC490	365 ≦	490 ≦	16≦	16≦	16≦	16≦	16≦	
NSDC570	560 ≦	570≦	-	-	-	_	_	

Note:

1) In case when non-aging property is specified for plates/sheets and coils for NSDCD3, non-aging property is guaranteed for 6 months after delivery from production plants. Non-aging property indicates the property of no occurrence of stretcher strains during fabrication.

2) Prior consultation is requested for every lot of orders for NSDCH and NSDC570 products.

, d

 \geq

 \triangleright

 \mathbb{R}

_

 \triangleright

_

References:

1) NSDCC has normally yield point of 205 N/mm² or more and tensile strength of 270 N/mm² or more.

2) NSDCH is not applied with annealing and has Rockwell hardness of 85 ${\rm H}_{\rm PB}$ or more and Vicker's hardness of 170 Hv or more (test load: optional).

\geq \triangleright -----R _ Þ _

SuperDyma^{**}

NIPPON STEEL Standards

Dimensional Tolerances

Dimensional Tolerances

Thickness Tolerances

- 1 Thickness tolerances shall apply to the sum of the nominal base sheet thickness and the equivalent coating thickness shown in Table 9.
- 2 Thickness tolerances shall be in accordance with Tables 7-1, 7-2 and 8.
- 3 Sheet thickness shall be measured at an optional point more than 25 mm inside from the edge.

Table 7-1 Thickness Tolerances (HR Base Sheets, For Commercial Uses)

Nominal thickness	Width (mm)			
(mm)	W < 1,200	$1,200 \le W \le 1,250$		
$1.60 \le t < 2.00$	± 0.17	±0.18		
$2.00 \le t < 2.50$	± 0.18	± 0.20		
$2.50 \le t < 3.15$	± 0.20	± 0.22		
$3.15 \le t < 4.00$	± 0.22	± 0.24		
$4.00 \le t < 5.00$	± 0.25	± 0.27		
$5.00 \le t < 6.00$	± 0.27	± 0.29		
$6.00 \le t < 8.00$	± 0.30	± 0.31		
$8.00 \le t \le 9.00$	± 0.33	± 0.34		

	-
Nominal thickness	Width (mm)
(mm)	W≦1,250
$1.60 \le t < 2.00$	± 0.20
$2.00 \le t < 2.50$	± 0.21
$2.50 \le t < 3.15$	± 0.23
$3.15 \le t < 4.00$	± 0.25
$4.00 \le t < 5.00$	± 0.46
$5.00 \le t < 6.30$	± 0.51
$6.30 \leq t \leq 9.00$	± 0.56

Table 7-2 Thickness Tolerances (HR Base Sheets, For Structural Uses)

Table 8 Thickness Tolerances (CR Base Sheets)

Nominal thickness	Width (mm)					
(mm)	W < 630	$630 \le W \le 1,000$	1,000≦W≦1,250			
t < 0.25	± 0.04	± 0.04	± 0.04			
$0.25 \le t < 0.40$	± 0.05	± 0.05	± 0.05			
$0.40 \le t < 0.60$	± 0.06	± 0.06	± 0.06			
$0.60 \le t < 0.80$	± 0.07	± 0.07	± 0.07			
$0.80 \le t < 1.00$	± 0.07	± 0.07	± 0.08			
$1.00 \le t < 1.25$	± 0.08	± 0.08	± 0.09			
$1.25 \le t < 1.60$	± 0.09	± 0.10	± 0.11			
$1.60 \le t < 2.00$	± 0.11	± 0.12	± 0.13			
$2.00 \leq t \leq 2.30$	± 0.13	± 0.14	± 0.15			
NUMBER OF STREET, AND						

es other than those given in Table 9 may be agreed upon between the parties involved with deliveries.

Width Tolerances

Table 10 Width Tolerances								
	In the care of u	In the care						
Width	Mill edge (A)	Cut edge (B)	using CR she					
W≦1,500	+ 25	+ 10	+ 7 0					
1,500 < W	0	0	+ 10					

Table 9 Equivalent Coating Thickness Symbol of Equivalent coating

coating thickness	thickness (mm)
K06	0.016
K08	0.021
K10	0.027
K12	0.033
K14	0.036
K18	0.044
K20	0.051
K22	0.054
K25	0.062
K27	0.068
K35	0.082
K45	0.101

Length Tolerances

(mm)

ets

• Table 11 Length Tolerances (mm)						
Length	In the care of using HR sheets	In the care of using CR sheets				
L < 2,000	+ 15	+ 10 0				
2,000 ≦ L	0	+ 15 0				

ASTM A 1046/A 1046M-06 (Excerpts from ASTM Standards)

Standard Specification for Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process

Specification

Scope

- 1 This specification covers zinc-aluminum-magnesium alloy-coated steel sheet in coils and cut lengths.
- 2 This product is intended for applications requiring corrosion resistance and paintability.
- 3 The steel sheet is produced in a number of designations, types, grades and classes designed to be compatible with differing application requirements.
- 4 This specification is applicable to orders in either inch-pound units (as A 1046) or SI units (as A 1046M). Values in inch pound and SI units are not necessarily equivalent. Within the text, SI units are shown in brackets. Each system shall be used independently of the other.
- **5** This standard dose not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Table 1 Weight [Mass] of Coating Requirement⁴

	Inch-Pound Units		SI Units			
Coating Designation	Minimum R	equirement	Coating Designation	Minimum Requirement		
	Triple-Spot Test Total Both Sides, oz/ft ²	Single-Spot Test Total Both Sides, oz/ft ²		Triple-Spot Test Total Both Sides, g/m ²	Single-Spot Test Total Both Sides, g/m ²	
ZM210	2.10	1.80	ZMM600	600	510	
ZM165	1.65	1.40	ZMM500	500	425	
ZM140	1.40	1.20	ZMM450	450	385	
ZM115	1.15	1.00	ZMM350	350	300	
ZM90	0.90	0.80	ZMM275	275	235	
ZM75	0.75	0.65	ZMM220	220	190	
ZM60	0.60	0.50	ZMM180	180	150	
ZM40	0.40	0.30	ZMM120	120	90	
ZM30	0.30	0.25	ZMM90	90	75	
ZM20	0.20	0.16	ZMM60	60	50	

^AThe coating designation number is the term by which this product is specified. Because of the many variables and changing conditions that are characteristic of continuous hot-dip coating lines, the weight [mass] of the coating is not always evenly divided between the two surfaces of a sheet, nor is the coating evenly distributed from edge to edge. However, it can normally be expected that not less than 40 % of the single -spot test limit will be found on either surface. • Prior consultation is requested for every lot of orders for the products having coating masses of ZM210, ZM165, ZM140, ZM115, ZMM600, ZMM500, ZMM500 and ZMM350

Table 2 Chemicale Requirements⁴

	Composition, %-Heat Analysis Element, max (unless otherwise shown)												
Designation	С	Mn	Р	S	Al, min	Cu	Ni	Cr	Мо	V	Cb	Ti ^B	Ν
CS Type A ^{C,D,E}	0.10	0.60	0.030	0.035		0.20	0.20	0.15	0.06	0.008	0.008	0.025	
CS Type B ^{C,F}	0.02 to 0.15	0.60	0.030	0.035		0.20	0.20	0.15	0.06	0.008	0.008	0.025	
CS Type C ^{C,D,E}	0.08	0.60	0.100	0.035		0.20	0.20	0.15	0.06	0.008	0.008	0.025	
FS Type A ^{C,G}	0.10	0.50	0.020	0.035		0.20	0.20	0.15	0.06	0.008	0.008	0.025	
FS Type B ^{C,F}	0.02 to 0.10	0.50	0.020	0.030		0.20	0.20	0.15	0.06	0.008	0.008	0.025	
DDS ^{D,E,H}	0.06	0.50	0.020	0.025	0.01	0.20	0.20	0.15	0.06	0.008	0.008	0.025	
EDDS ^{H,I}	0.02	0.40	0.020	0.020	0.01	0.20	0.20	0.15	0.06	0.10	0.10	0.15	

^AWhere an ellipsis $(\cdot \cdot \cdot)$ appears in this table, there is no requirement, but the analysis shall be reported. ^B For steels containing more than 0.02 % carbon, titanium is permitted to 0.025 % provided the ratio of % titanium to % nitrogen does not exceed 3.4. ^c When a deoxidized steel is required for the application, the purchaser has the option to order CS and FS to a minimum of 0.01 % total aluminum. ^D Steel is permitted to be furnished as a vacuum degassed or chemically stabilized steel, or both, at the producer's option. ^E For carbon levels less than or equal to 0.02 %, vanadium, columbium, or titanium, or combinations thereof are permitted to be used as stabilizing elements at the pro-ducer's option. In such cases, the applicable limit for vanadium and columbium shall be 0.10 % max. and the limit for titanium shall be 0.15 % max. F For CS and FS, specify Type B to avoid carbon levels below 0.02%

^G Shall not be furnished as a stabilized steel.

^HMinimum AI content is not required if agreed to by purchaser and supplier.

'Shall be furnished as a stabilized steel

Remarks: Regarding the suffix H in the table, it is required for the lower limit for Al not to be provided. In cases when the lower limit for Al is necessary, prior consultation is requested.

 \geq

28

\geq \geq _ ᆔ

SuperDvma

Standard Specification for Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process

Specification - 2

Table 3 Chemical Requirements⁴

	Composition, %-Heat Analysis Element, max (unless otherwise shown)												
De	esignation	С	Mn	Р	S	Cu	Ni	Cr	Мо	V ^B	Cb [₿]	Ti ^{B,C,D}	Ν
	33[230]	0.20		0.04	0.040	0.20	0.20	0.15	0.06	0.008	0.008	0.025	
	37[255]	0.20		0.10	0.040	0.20	0.20	0.15	0.06	0.008	0.008	0.025	
SS Grada	40[275]	0.25		0.10	0.040	0.20	0.20	0.15	0.06	0.008	0.008	0.025	
55 Glade	50[340] Class 1,2 and 4	0.25		0.20	0.040	0.20	0.20	0.15	0.06	0.008	0.008	0.025	
	50[340] Class 3	0.25		0.04	0.040	0.20	0.20	0.15	0.06	0.008	0.008	0.025	
	80[550]	0.20		0.04	0.040	0.20	0.20	0.15	0.06	0.008	0.015	0.025	
	40[275]	0.20	1.50		0.035		0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
	50[340]	0.20	1.50		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
HSLAS ^E	60[410]	0.20	1.50		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
	70[480]	0.20	1.65		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
	80[550]	0.20	1.65		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
	40[275]	0.15	1.50		0.035		0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
	50[340]	0.15	1.50		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
HSLAS-F [₽]	60[410]	0.15	1.50		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
	70[480]	0.15	1.65		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
	80[550]	0.15	1.65		0.035	0.20	0.20	0.15	0.16	0.01 min	0.005 min	0.01 min	
^A Where an e	Where an ellipsis $(\cdot \cdot)$ appears in this table there is no requirement, but the analysis shall be reported.												

SuperDyma[™]

 \geq

 \geq

-

_

 \triangleright

_

^BFor carbon levels less than or equal to 0.02 %, vanadium, columbium, or titanium, or combinations thereof, are permitted to be used as stabilizing elements at the producer's option. In such cases, the applicable limit for vanadium and columbium shall be 0.10 % max, and the limit for titanium shall be 0.15 % max. ^CTitanium is permitted for SS steels to 0.025 % provided the ratio of % titanium to % nitrogen does not exceed 3.4. ^DFor steels containing more than 0.02 % carbon, titanium is permitted to 0.025 %, provided the ratio of % titanium to % nitrogen does not exceed 3.4.

FHSLAS and HSLAS-F steels commonly contain the strengthening elements columbium, vanadium, and titanium added singly or in combination. The minimum requirements only apply to the microalloy elements selected for strengthening of the steel.

^FThe producer has the option to treat HSLAS-F steels by means of small alloy additions to effect sulfide inclusion control.

• Prior consultation is requested for every lot of orders for SS80 (550), HSLAS60 (410), MSLAS70 (480), HSLAS80 (550) and HSLAS-F products.

Table 4 Mechanical Property Requirements, Base Metal (Longitudinal)

		Inch-Pou	Ind Units		SI Units						
Designa- tion	Grade	Yield Strength, min ksi	Tensile Stength, min, ksia	Elongation in 2 in., min, %A	Grade	Yield Strength, min MPa	Tensile Stength, min, MPa ₄	Elongation in 50 mm, min, % ^A			
	33	33	45	20	230	230	310	20			
	37	37	52	18	255	255	360	18			
	40	40	55	16	275	275	380	16			
00	50 Class 1	50	65	12	340 Class 1	340	450	12			
33	50 Class 2	50		12	340 Class 2	340		12			
	50 Class 3	50	70	12	340 Class 3	340	480	12			
	50 Class 4	50	60	12	340 Class 4	340	410	12			
	80 ^{<i>B</i>}	80 ^c	82		550 ⁸	550 ^c	570				
	40	40	50 ^D	22	275	275	340 ^D	22			
	50	50	60 ^D	20	340	340	410 ^D	20			
HSLAS	60	60	70 ^D	16	410	410	480 ^D	16			
	70	70	80 ^D	12	480	480	550 ^D	12			
	80	80	90 ^{<i>D</i>}	10	550	550	620 ^D	10			
	40	40	50 ^D	24	275	275	340 ^D	24			
	50	50	60 ^D	22	340	340	410 ^D	22			
ISLAS-F	60	60	70 ^D	18	410	410	480 ^D	18			
	70	70	80 ^D	14	480	480	550 ^D	14			
	80	80	90 ^D	12	550	550	620 ⁰	12			

^AWhere an ellipsis $(\cdot \cdot \cdot)$ appears in this table, there is no requirement.

^BFor sheet thickness of 0.028 in. [0.71 mm] or thinner, no tension test is required if the hardness result in Rockwell B 85 or higher.

²As there is no discontinuous yield curve, the yield strength should be taken as the stress at 0.5 % elongation under load or 0.2 % offset. ^DIf a higher tensile strength is required, the user should consult the producer.

• Prior consultation is requested for every lot of orders for SS80 (550), HSLAS60 (410), MSLAS70 (480), HSLAS80 (550) and HSLAS-F products.

Specification - 3

Table5 Typical Ranges of Mechanical Properties (Nonmandatory)^{A,B}

		(Longitudinal Direction)			
Designation	Yield S	trength	Elongation in	rm Value ^c	N Value ^D
	ksi	MPa	2 in. [50 mm]%		
CS Type A	25/55	[170/380]	≥20	E	E
CS Type B	30/55	[205/380]	≥20	E	Е
CS Type C	25/60	[170/410]	≥15	E	Е
FS Types A and B	25/45	[170/310]	≥26	1.0/1.4	0.17/0.21
DDS	20/35	[140/240]	≥32	1.4/1.8	0.19/0.24
EDDS ^F	15/25	[105/170]	≥40	1.6/2.1	0.22/0.27

⁴The typical mechanical property values presented here are nonmandatory. They are intended solely to provide the purchaser with as much infomation as possible to make an informed decision on the steel to be specified. Values outside of these ranges are to be expected. The purchaser may negotiate with the supplier if a specified ic range or a more restrictive range is required for the application.

⁸These typical mechanical properties apply to the full range of steel sheet thicknesses. The yield strength tends to increase and some of the formability values tend to decrease as the sheet thickness decreases.

^crm Value – Average plastic strain ratio as determined by Test Method E 517.

^DN Value – Strain-hardening exponent as determined by Test Method E 646.

^ENo typical mechanical properties have been established.

FEDDS Sheet will be free from chages in mechanical properties over time, that is, nonaging.

Table 6 Coating Bend Test Requirements

		Ra	tio of the Ben	d Diame	Inch eter to T	-Pound hicknes	Units s of the	Specim	en (Any	Directio	n)			
	CS, FS, E	DDS, EDDS Sheet T	hickness	S	S Grade	e ^B	HSLAS [®]			HSLAS-F				
Coating Designation ⁴	Through 0.039 in.	Over 0.039 through 0.079 in.	Over 0.079 in.	33	37	40	40	50	60	40	50	60	70	80
ZM210	2	2	2	2	2	21/2								
ZM165	2	2	2	2	2	21/2								
ZM140	1	1	2	2	2	21/2								
ZM115	0	0	1	1 ¹ /2	2	21/2	1 ¹ /2	1 ¹ /2	3	1	1	1	1 ¹ /2	1 ¹ /2
ZM90	0	0	1	11/2	2	21/2	1 1/2	1 1/2	3	1	1	1	1 1/2	11/2
ZM70	0	0	0	1 ¹ /2	2	21/2	1 ¹ /2	1 ¹ /2	3	1	1	1	1 ¹ /2	1 ¹ /2
ZM60	0	0	0	11/2	2	21/2	1 1/2	1 1/2	3	1	1	1	1 1/2	11/2
ZM40	0	0	0	1 ¹ /2	2	21/2	1 ¹ /2	1 ¹ /2	3	1	1	1	1 ¹ /2	1 ¹ /2
ZM30	0	0	0	1 ¹ /2	2	21/2	1 ¹ /2	1 ¹ /2	3	1	1	1	1 ¹ /2	1 ¹ /2
ZM20	0	0	0	11/2	2	21/2	1 1/2	1 1/2	3	1	1	1	1 1/2	1 1/2
Cl. Unite														

Ratio of the Bend Diameter to Thick

0 "	CS, FS, DDS, EDDS Sheet Thickness				SS Grade ^c			HSLAS ^C			HSLAS-F				
Designation ⁴	Through 1.0 mm	Over 1.0 through 2.0 mm	Over 2.0 mm	230	255	275	275	340	410	275	340	410	480	550	
ZMM600	2	2	2	2	2	21/2									
ZMM500	2	2	2	2	2	21/2									
ZMM450	1	1	2	2	2	21/2									
ZMM350	0	0	1	1 ¹ /2	2	21/2	1 ¹ /2	1 ¹ /2	3	1	1	1	1 ¹ /2	1 ¹ /2	
ZMM275	0	0	1	11/2	2	21/2	11/2	11/2	3	1	1	1	11/2	11/2	
ZMM210	0	0	0	1 ¹ /2	2	21/2	1 ¹ /2	1 ¹ /2	3	1	1	1	1 ¹ /2	1 ¹ /2	
ZMM180	0	0	0	11/2	2	21/2	1 1/2	11/2	3	1	1	1	11/2	11/2	
ZMM120	0	0	0	11/2	2	21/2	1 ¹ /2	11/2	3	1	1	1	1 ¹ /2	11/2	
ZMM90	0	0	0	11/2	2	21/2	1 ¹ /2	11/2	3	1	1	1	1 ¹ /2	1 ¹ /2	
ZMM60	0	0	0	11/2	2	21/2	11/2	11/2	3	1	1	1	11/2	11/2	

^AIf other coatings are required, the user should consult the producer for availability and suitable bend test requirements. ^BSS Grades 50 and 80 and HSLAS Grades 70 and 80 are not subject to bend test requirements. ^cSS Grades 340 and 550 and HSLAS Grades 480 and 550 are not subject to bend test requirements • Prior consultation is requested for every lot of orders for the products having coating masses of ZM210, ZM165, ZM140, ZM115, ZMM600, ZMM500, ZMM450 and ZMM350.

kness of	f the S	Specimen	(Any	Direction)
----------	---------	----------	------	------------

\geq \bowtie m R _ \triangleright _

SuperDyma

ASTM Þ 1046/A _ 046 M -06 (Excer rpts from ASTM Sta nd a i rds)

SuperDyma™

0

_

Ŧ

 \mathbb{R}

S

An

Array

of

Approvals

SuperDyma^{**}

An Array of Approvals

32 SuperDyma Catalog

OTHERS

SuperDyma™

An Array of Approvals

Packaging and Marking

Coated steel sheets are packaged and then shipped to protect them against damage that can be caused by normal handling and storage during the period from manufacture to practical application. A marking label is attached to each package to indicate the details of the content. Further, an inspection sheet is sealed inside the package to guarantee the product.

Please use these label and sheet to check receipt of the product. The items described on these label and sheet are as follows.

Contents of the Package Label Package Label Item (F) Item A12303 SUPERDYMA No. Α Brand name NSDCC : S Z Q N X SHANGHAI B Inspector mark G 0.80 X 914 X C • Specifications ALE MASS(THEO) GROSS MASS(THEO) 1.657KG ● 1.720KG CAST NO. ● CONTRACT NO. 367706 ■ 3-1-6479-03[●] CO12 0 152 ⁰2410398 Coating 8 Size 722190280 B Inspection side NIPPON STEEL CORPORATION SXXXXX WORKS C Net mass G 2 Gross mass 0 TMW net mass * Indication of Specifications Sheets Coils **Products Conforming to ASTM Specifications** Length (and Bundling ASTM A1046M (CS TYPE B) - 06: S Z QN X Number) 1 3 4 5 6 K Cast number 1: Standard No. 4: Surface finish symbol Contract No. 2: Type designation 5: Surface treatment symbol 6: Oiling symbol (in the case of oiling: O(N)) ③:Skin-pass rolling symbol M Case No. N Inspection No. **Products Conforming to NIPPON STEEL's Own Specifications** 0 Coil No. P Production date NSDCC:SZQNX 0 Shipping mark (2) (3) (4) (5) B 4: Surface treatment symbol Maker's name 1: Type designation 2: Skin-pass rolling symbol 5: Oiling symbol (in the case of oiling: N) 6 Works 3: Surface finish symbol Ū Country of origin Note: If skin-pass rolling is not specified, the items after surface finish symbol are indicated by moving

these items to the left.

SuperDyma™

Precautions in Use

When inappropriate handling and application methods are used, superdyma cannot demonstrate its characteristic properties. It is recommended that attention be paid to the following precautions regarding use.

Storage and Loading/Unloading

- 1) Water leakage during loading/unloading and storage constitutes a cause of corrosion. Strictly avoid loading/unloading during rain and prevent exposure to seawater and dew condensation. Also, avoid storage in atmospheres of high humidity or sulfur-dioxide. Indoor storage under dry, clean conditions is recommended.
- (2) Broken or torn packaging paper must be repaired.
- ③ When coils and cut-length sheets are stored in piles for an extended time, the coated surfaces may become blackened. Because of this, early application is recommended.

/ Warning

• Falling and rolling coils are very dangerous, as is the collapse of piled sheets. To prevent such accidents during storage, due care should be paid to storing products in a stable, secure state.

Handling

- (1) Handle products carefully so as not to damage coatings or surface-treatment films.
- 2 Perspiration and fingerprints impair paintability and corrosion resistance. If either occurs, appropriate post-treatment and repair are required.

Attention

- When removing (cutting) coil binding hoops (bands) for use, make certain that the end of the coil is directly beneath the coil center in order to prevent the end of the coil from sudden springing out of the coil end; or, be certain to conduct the removal in a place where safety can be assured and no danger is posed if the coil end were to spring out upon release.
- Coils are formed by winding flat sheets. When the binding hoops or other external forces that keep the sheet in coil form are removed and the coil end is freed, the coil end will spring outward to return to a flat state. Further, there are also cases when the coil bindings become loose, allowing the coil to spring out. Such cases may endanger nearby workers and cause damage, so careful attention must be paid when removing the coil binding hoops (bands).

Aging

Generally, steel sheets tend to show deterioration in quality over time-e.g. degraded formability, stretcher stains, and coil breaks. To avoid this, usage at the earliest possible time is recommended. However, this problem can be avoided if products with aging resistance are selected.

Welding

① In resistance welding, because the electrodes are soiled by the pick up of zinc, they should be properly maintained and replaced at regular intervals. 2 In welding, fumes consisting mainly of zinc oxides are generated. Although the effect of these fumes will differ depending on the working environment, it is recommended that welding be conducted in a well-ventilated place.

0

-

 \pm

 \sim

S

SuperDyma

Press Forming

① The application of certain kinds of extreme pressure agents as lubricants during press forming can cause corrosion of the coating layer. Prior confirmation is requested when such agents are used. When such agents must be used, degreasing and other post treatments should be conducted thoroughly and quickly.

(2) In press forming, severe damage to the surface layer can adversely affect paintability and corrosion resistance.

0 — Т _ \mathcal{P} S

SuperDyma^{**}

Precautions i. Use

Guide to Ordering

When placing orders, confirmation is required for the following items per each intended application.

Standards

Select the most suitable material quality from among the standards described in this catalog according to the severity and methods of fabrication.

Coating Mass

Select the most suitable coating mass according to the required corrosion resistance, application conditions, and fabrication methods.

Sizes

The size of galvanized steel sheets (thickness, width and length) is the basic condition for product yield. Design the product referring the range of available sizes described in this catalog. Sizes are available in 0.05-mm increments for thickness and 1-mm increments for width and length.

Coils

- Select coils or cut-length sheets according to shear and fabrication conditions.
- The selection of coils will effectively improve product yield by allowing continuous and automated operation. In the case of coils, however, some defective parts may unavoidably be included because their removal, based on inspection, is impossible.

Edge Finish

Specify either mill edges or slit edges according to the application conditions.

Surface Treatment

Select the most suitable surface treatment from among those described in this catalog according to the treatment method after fabrication and the application conditions.

Oiling

The decision whether or not to apply rust-preventive oil can be made separately from the kind of surface treatment. Oiling is recommended in order to improve intermediate rust resistance, to mitigate fingerprints and damage during handling, and to maintain lubrication during press forming. Meanwhile, oiling is indispensable for galvanized sheets lacking surface treatment.

Package Mass

Specify the package mass according to the local loading/unloading capacity and work efficiency. The heavier the coil mass, the higher the work efficiency. In the case of coils, specify the maximum mass (unit minimum mass if necessary).

The average package mass of actual shipments is determined by the relation between the maximum mass and the size to divide the manufacturing mass.

Inside and Outside Coil Diameters

In the case of coils, specify the inside and outside coil diameters according to the specifications of the uncoilers on the shearing line. When selecting inside diameters, it is necessary to consider the occurrence of break and reel marks on the area of the inside diameter, depending on the thickness.

Dimensional Accuracy (Thickness, Width and Length)

Dimensional accuracy of thickness, width and length is guaranteed within the range of sizes described in this catalog. However, there are cases that require strict size specifications with respect to assembly accuracy and dimensional accuracy of the parts, depending on the application conditions of the finished products. In such cases, consult us in advance to clarify the specifications.

Applications, Fabrication Methods and Others

NIPPON STEEL implements quality control to better suit the intended application. For that purpose, it is requested that the intended application, fabrication method, and other requirements be clearly indicated.

_

 $\overline{\mathcal{P}}$

S

THERS

SuperDyma™

Guide to Ordering

"Super Fabricated Products" Employing Super Dyma of NIPPON STEEL

SuperDyma: "The Right Material" Promotes Cost Cutting

SuperDyma vs. Stainless and Aluminum Products

• Is it true that such superior corrosion resistance is necessary?

- Aren't you resigned to the fact that steel is prone to rust?
- >>> Allows cost cutting in applications where the corrosion resistance offered by stainless and aluminum products is not required.

SuperDyma vs. Post-coated and Post-painted Sheets

- Metallic coating plus painting: Is this time-consuming and costly processing truly necessary?
- >>> Highly effective in reducing the inevitable "coating expense + transport" cost" issues associated with post-coated and post-painted sheets
- Don't you adopt a heavier-than-needed sheet thickness just because of the difficulty involved in the coating of steel sheet*?

*When subjected to post-coating, thin sheets of substantial length and width commonly suffer distortion and cost run-ups.

Target applications: Thickness range of 3.2 mm or less for post-coated sheets

- Beautiful manufactured surface texture: How would you like this type of decorativeness?
- Enhanced decorative freedom obtained by fully utilizing metallic materials

SuperDyma[™]

SuperDyma^{**}

Г	
L	R
L	g
I.	h
	-
	P
	_
	Q
	0
	Φ

						- Right Materials			Right Plac	es	
No Hesitation in	n Selection! M	atrix for Sele	cting Super F	abricated Pro	ducts	P Post-coating and post-painti	ing elimination 🔋 Replacemer	t use for stainless steel and aluminu	Im products S Salt damage a	rea A Alkaline environment	H High-humidity environment
Fabricated products				<i>5</i> 84	<i>li</i> s		<i></i>		(A)		
				No.	S				l v		
Application fields	Light-gauge Shapes	Square and Round Pipes	Lath Sheets and Expanded Metals	Punched metal	Fine floors, perforated folded sheets, gratings	Deck Plates	Roofs and Walls	Steel Backing Materials for Ceiling	Cable Racks	Ducts and Tunnels	Metal Fabrication
Building construction	Main house member (Meiji Kogyo's Tochigi plant) Furring strip member (Nippon Steel Logistics' warehouse) (Meiji Kogyo's Tochigi plant) Factory and warehouse buildings Building facility	Column member (Nippon Steel Logistics' warehouse) Plant and warehouse buildings	 Roof sound-insulation panel Falling-prevention net Mortar cement backing material 	Ceiling noise-absorption panel (Chubu International Airport passeng- er terminal building) Noise-suppressing member (waste treatment plant) Exterior finish material (Ikuei High School's College) Ceiling panel, silencer	Exterior finish material, perfo- rated folded sheets (Fuji Women High School) Exterior finish material, perfo- rated folded sheets (Mito Crystal Hotel) Exterior finish material, perfo- rated folded sheets (Rock Fields new Kobe Plant)	 Multi-storied parking garage at Chubu International Airport Multi-storied parking garage at Okinawa Phoenix Hall Office building Kooriyama/Hachiyamada Hospital 	Show room NIPPON STEEL'S Kimitsu Works (exterior wall) Chubu International Airport cockpit air-conditioner room (roof) Factory and plant (exterior wall)	Tokyo Dome City redevelopment Oyodocho Health Cener James Mountain public bath Coca Cola Ichikawa Plant Higashi-Kawaguchi Sports Center Gold Gymnasium Omori Nara Transport's Kashiwata Sports Building Tanaka Industry's Nomigawa	Office building Hospital facility Waste treatment plant University facility Fire & Disaster Management Agency building	Passenger terminal building of Chubu International Airport (duct) Vuhara Hol Spring Hospital (duct) Plant (duct) Nihonbashi Building (smoke stack) Meiji-Yasuda Life Insurance Building (smokestack)	Toyota Stadium (traming for spectator seat) Structural fitting (scaffolding clamp) KANEYASU Co. (shutter) Noise-reduction equipment (silencer, looper)
	PRSH	PRSH	PBSAH	PRSH	PRSH	PSAH	PRSH	Building PRSH	PRSH	PRSAH	PRSH
Civil engineering			●Earth-retaining fence ●River cage-mat material	•Wind-breaking fence	 Wind-breaking and snow- protection fences Grating floor slab 						 Slope frame for nature- oriented revetment (Ee frame)
			PBH	PBSH	PSH						PRSAH
Housing structural members		 Housing steel strut (round) Housing fence component 	Detached and multi-storied house fences	 Housing exterior finish material Detached and multi-storied housing fence 			•House, shop (exterior wall)				Prefabricated house (joist, sieeper, strut, foundation) Gutter fixture Structural fitting Door for multi-storied housing
		PRSH	PRSH	PRSH			PRS]			PRSH
	•Agricultural house •Cattle shed	• Agricultural house • Cattle shed	Agricultural facility and cattle shed fences				Compost house (roof, wall) Compost plant (roof, wall) Livestock-farm cattle shed			Cattle shed (duct)	Greenhouse structural member Agricultural ventilation fan (framing) Henhouse (framing)
Agriculture and livestock farming							(100, man)				(rannig)
	PRSAH	PRSAH	PBSAH				PRSAH			PRSAH	PRSAH
Highways and railways	Main house member (station platform)	Highway and railway fence posts	Highway and railway fence	 Ceiling panel (Taiwan Superexpress station building) Ceiling panel, silencer 	• Grating floor slab				•Yokohama Bay Bridge •Highway and railway tunnels	Fukuoka High-speed Railway (ventilation tower)	 Rear-surface noise-absorption panel (Tolyo Outer Loop Expressway) Highway sound barrier, U-shaped channel protecting cover Musashino bridge at Route 36, Tomio- kagawa bridge at Route 37, Kajigaya elevaled bridge at Route 3246 (optical fiber protecting board) Moriya Station of Tsukuba Express (slari rascia, platform door) Hishway ence and Iamo-cover material
	PRS	PRSH	PRSH	PRSH	PSH				PRSH	PBSH	Anti-glare board P R S H
Electricity and communications				Noise-absorption panel (thermal power plant)							Mega Solar (back board) NIPPON STEEL'S Kimitsu Works (control panel) Electrical equipment material (electric pole band) Construction material (metal fixture)
				PRSH		Housing str	uctural members				PRSH
Electric machines, metal fittings, automobiles and others			Home appliance dryer component Umbrella stand	•Umbrella stand	Electric Automobiles, electric machines, metal fittings, etc.	Agriculture and livestock far	Highways and railways	Building Civil engineering	construction		Air-conditioner outdoor equip- ment, bathroom dryer Automobile component (truck body parts, passenger car sliding door rail) Rice storage building (taze kit, hinge) Manger, flower pot Square hanger, hot-water bot- tle, key case Trash bos framing, ashtray

SuperDyma™

Matrix

INDEX

SuperDyma™

>
>
0
-
_
_
<u> </u>
×

Super Fabricated Products Application field:

Building Construction

Application field in which high decorativeness in addition to high corrosion resistance of SuperDyma is fully utilized

· 200.1.

不二女子盲等学

SuperDyma^{**}

Design: Hiroo Tanahashi +AD Network Architectural Design Institute

P R O D U C T S

SuperDyma™

Building Construction

P

 \mathbb{R}

0

D

 \square

 \cap

∞ 0 D \square \cap -S

SuperDyma^{**}

Building Construction

🛞 😺 🏐 🖏 🍣 🌒 🌒 🌍 🍣 🍏

Civil Engineering

Even in the application field where contact with earth and mortar concrete is unavoidable, SuperDyma demonstrates its inherent characteristic performances

RODUCTS

SuperDyma[™]

Civil Engineering

RODUCTS

Ρ

SuperDyma[™]

Housing Structural Members

ѫ 0 \square \cap _ S

SuperDyma^{*}

Agriculture and Livestock Farming

Metal fabrication

Moriya Station at Tsukuba Express

(Stair fascia board)

SuperDyma^{**}

Musashiono Bridge at Route 16

(Optical fiber protecting board)

Metal fabrication

Yokohama Bay Bridge (Cable rack)

ᆔ 0 \square Ś

SuperDyma^{**}

High vays a n d Railways