

https://www.nipponsteel.com/en/index.html

Designing Titanium TranTixxii[™]

NIPPON STEEL CORPORATION

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111

Designing Titanium TranTixxii™ T105en_06_202503f © 2022, 2025 NIPPON STEEL CORPORATION All rights reserved.

NIPPON STEEL CORPORATION

Titanium, on the cutting edge of the times, is an environmentally friendly metal.

Our titanium products have passed third-party verification under the SuMPO Environmental Label Program, managed by the Sustainable Management Promotion Organization (SuMPO), and have obtained the SuMPO Environmental Product Declaration (EPD). The SuMPO EPD we have acquired quantitatively evaluates the environmental impact from the raw material procurement to the manufacturing process, as well as the recycling effects.

JR-BZ-23001E Titanium Coils/Sheets JR-BZ-23002E Titanium Coils/Sheets TranTixxii-Eco https://ecoleaf-label.jp/epd/1090 JR-BZ-24001E Titanium Plates JR-BZ-24002E Titanium Plates TranTixxii-Eco JR-BZ-24003E Titanium wire rod IR-BZ-24004F Titanium wire rod TranTixxii-Eco

Precautions and request

The technical information contained in this publication is intended to explain the main characteristics and performance of products, and is not a guarantee unless explicitly stipulated as a "standard." Please note that we are not responsible for any damage caused by incorrect or inappropriate use of the information described herein. The information in this publication is subject to change without notice. For the latest information, please contact the department in charge.

Please refrain from unauthorized reproduction or copying of the contents of this publication.

The names of products and services shown in this publication are trademarks or registered trademarks of Nippon Steel Corporation, affiliated companies, or third parties granting rights to Nippon Steel Corporation and affiliated companies.

Other product or service names shown are trademarks or registered trademarks of their respective owners.

Titanium, an element found in 1790, was named after the Titans, earth giants in Greek mythology.

Its industrial production began around 1946. Thanks to its excellent characteristics of being "light," "strong" and "rust-free," it began to be applied in the aerospace, chemical, electric-power and other industries, finding its way further into architectural, civil-engineering, medical and general-purpose applications.

Architects began to use titanium in the 1970s. Titanium's unparalleled performance in corrosion-resistance makes many architectural designs possible for structures in severely corrosive, salty atmospheres of seashores and also in permanent architecture (e.g., museums, temples and shrines). Lately, titanium designs have begun to spread to general housing also.

Overseas, in the 1990s, the use of titanium on a massive scale by Frank O. Gehry in the Guggenheim Museum Bilbao (in Spain) attracted the attention of many architects and spread to many countries. Demand for designing titanium is expected to further grow in the future.

https://ecoleaf-label.jp/epd/1089 https://ecoleaf-label.ip/epd/1640 https://ecoleaf-label.jp/epd/1641 https://ecoleaf-label.jp/epd/1993 https://ecoleaf-label.jp/epd/1994

CONTENTS

Titanium's properties, Designing titanium/ TranTixxii "Beautiful titanium"

Basic properties of Titanium & Designing Titanium TranTixxii (Basic Property) $\ \cdots \ 2$
Designing titanium Specification System (Material: Standards code) 6
Designing titanium Surface Finishes System (Texture × Color) 8
Designing titanium Color features10
<portfolio 1=""> Standard type & flatness-oriented type14</portfolio>
<portfolio 2=""> Special finishing HYPERBETA&IP GOLD TITANIUM ··· 19</portfolio>
<portfolio 3=""> Formability Type/Super-FormabilityType TTXF TTXS</portfolio>
<portfolio 4=""> For watches TTXW21</portfolio>
<portfolio 5=""></portfolio> For automobiles TTXA heat-resistant alloy series \cdots 22
<reference materials="">24</reference>

Titanium's properties

Designing titanium / TranTixxii "Beautiful titanium"

State-of-the-art titanium, a highly functional metal with excellent material properties

Beauty that transcends time

- ① Extreme corrosion resistance: **Long service** life & value that lasts into the future
- 2 Environmental friendliness: Harmony with nature
- ③ Light weight & high strength: Making structures lighter & stronger

Manifesting beauty in diverse ways

Color(beauty of color) Texture(beauty of color tone) Form (beauty of form)

Basic properties of Titanium & Designing Titanium TranTixxii (Basic Property)

1. Unparalleled corrosion resistance

Titanium, readily forming stable oxide films (in a passive state) at room temperatures, gives excellent performance in corrosion resistance. In ordinary service environments, the possibility of titanium becoming corroded is non-existent.

(1) Seawater corrosion resistance is comparable to that of (4) Corrosion due to contact with different metals (Refer to platinum.

- Suited to application in coastal areas.

(2) Excellent corrosion resistance to corrosive gases (sulfurous acid gas, hydrogen sulfide gas, etc.)

- Suited to application in large cities, industrial areas, hot-spring resorts and the like.

Table 1. Comparison of weather resistance between various metals (Source: Japan Titanium Society)

	Titanium	Stainless steel SUS 304	Copper
Sea salt particle resistance (pitting)	Ø		0
Ultraviolet ray resistance	O	O	O
Acid rain resistance (pitting)	Ø	\bigtriangleup	\bigtriangleup
Acid rain atmospheric resistance	Ø	\bigtriangleup	×
Contact corrosion resistance*	Ø	×	\bigtriangleup
Corrosion fluidity resistance	Ø	0	×
Thermal resistance	Ø	O	O
Erosion resistance	Ô	O	0

Rating: ©: < 0.05, ○: 0.05-0.5, △: 0.55-1.27, ×: > 1.27 mm/year * Pitting and crevice corrosion are likely to occur.

2. Great strength

Titanium is almost as strong as steel, and it is a metal with a high strength per mass—in other words, it has a high specific strength.

For the application of Designing Titanium TranTixxii, JIS Type 1, which is highly workable, is mainly used.

		Chemical composition Mechanical properties (thickness: 0.5–15 mm, excl.)								Bend test (thickness: 0.5–5 mm, excl.)			
	Н	0	N	Fe	С	Ti	Tensile strength N/mm²	Proof stress N/mm ²	Elongation %	Bend angle	Inside radius		
JIS Type 1	≦0.013	≦0.15	≦0.03	≦0.20	≦0.08	Remainder	270-410	≧165	≧27	180°	Thickness by 2		
JIS Type 2	≦0.013	≦0.20	≦0.03	≦0.25	≦0.08	Remainder	340-510	≧215	≧23	180°	Thickness by 2		
JIS Type 3	≦0.013	≦0.30	≦0.05	≦0.30	≦0.08	Remainder	480-620	≧345	≧18	180°	Thickness by 2		

Titanium is a metal that also resists such global environmental pollution as acid rain and acid mist.

- (3) Titanium is quite free of stress corrosion, pitting, contact corrosion and other types of corrosion or problems inherent in stainless steel.
- "Table 3. Corrosion potential in seawater (flow)" on page 22.) The corrosion potential of titanium is virtually equal to that of stainless steel, and it can be used in the same manner. In locations where protection against contact corrosion is paramount, consideration must be given to insulation and the

Table 2. Comparison of chemical resistance between various metals (Source: Japan Titanium Society)

prevention of condensation.

	(Source, Japan Intanium Society										
	Titanium	Stainless steel SUS 304	Stainless steel SUS 316	Copper							
Seawater Room temperature	O	⊚*	⊚*	0							
Hydrochloric acid HCł 10% Room temperature	0	×	×	×							
Sulfuric acid H ₂ SO ₄ 10% Room temperature		0	0	0							
Nitric acid HNO3 10% Room temperature	O	\bigcirc	O	×							
Caustic soda NaOH 50% Room temperature	Ø	O	O	\bigcirc							
Sodium chloride NaCł 20% Room temperature	Ø	0	0	O							
Chlorine gas Cℓ₂ 100% wet	O	×	×	×							
Hydrogen sulfide gas H ₂ S 100% wet	O	0	O	×							
Sulfurous acid gas SO ₂ 30 to 90°C	O	0	0	×							

Rating: ©: < 0.05, ○: 0.05-0.5, △: 0.55-1.27, ×: > 1.27 mm/year * Pitting and crevice corrosion are likely to occur.

3. Light weight

The specific gravity of titanium is 4.51—60% that of steel, half that of copper and 1.7 times that of aluminum. Being such a lightweight metal, titanium imposes less burden on a structure, and permits ease of fabrication. According to use, it eliminates the need for corrosion-combating expenses, and enables further weight reduction.

4. Excellent aesthetic qualities

Titanium itself has an excellent texture and has a tastefully subdued silver color. Titanium is also available in many varied colors developed by the anodic oxidation method.

5. Minimum thermal expansion

6. Environmentally sound

	As d envir	issoluti onmer	ion of it.	tal. ons is min yclability.
ers				
	^	ы	.1	

7. Othe

Among the other major propertie
1 Non-magnetic
2 Small Young's modulus (elastic
③ Small thermal conductivity

Table 4. Comparison of physical properties between titanium and other metals

Metallic materials	Titanium	Stainless steel SUS 304	Stainless steel SUS 316	Iron	Copper	Aluminum
Melting point °C	1,668	1,398 to1,453	1,370 to1,397	1,530	1,083	660
Specific gravity	4.51	7.93	8.0	7.9	8.9	2.7
Coefficient of linear expansion \times 10–6 / °C (20~100)	8.4	17.3	16.0	12.0	17.0	23.0
Thermal conductivity ca ℓ / cm ² / sec /°C / cm	0.041	0.039	0.039	0.150	0.920	0.490
Electric resistance $\mu \Omega - cm$	47	72	74	9.7	1.7	2.7
Young's modulus kg / mm ²	10,850	19,300	19,300	21,000	11,000	7,050

Titanium is officially certified as a non-combustible material. (Minister of Land, Infrastructure and Transport Certification No. "NM-8596" (certified on May 17, 2002)

[Privileged features of TranTixxii]

pansion is half that of stainless steel and copper and one third

fficient quite near those of glass and concrete, titanium can be materials.

expansion or contraction from temperature changes, titanim in design and execution in long-term use.

inimal, titanium is a very friendly metal to humans and the

es titanium offers are:

ic modulus)

Basic properties of Titanium & Designing Titanium TranTixxii (Basic Property)

8. Survey data on corrosion resistance

(1) Data on corrosion tests of metallic materials in spa areas

Corrosion of metallic materials at spa areas is a frequent cause of a variety of environmental problems and accordingly it is necessary to pay prudent attention in selecting metallic materials for service in these areas. As a typical example of metal exposure tests conducted at spa areas, the test results obtained at the Zao spa, an area noted for its high acidity, are introduced below. (Source: Titanium and Zirconium, Vol. 35, No. 4, page 22, October 1987)

Table 5 Major constituents of the Zao springwater

able 5. Major con	Suluents of the Zao sp	Jilligwater			(a
	Temperature (°C)	pН	Cℓ⁻	SO42-	Fe ²⁺ +Fe ³⁺
Springhead	52.5	1.30	738.6	5,070	94.3
Public bath	46.7	1.35	845.3	5,460	106.0

Due attention should be paid as corrosion conditions differ according to the composition of springwater.

Table 6. Degree of corrosion of various metallic materials at the Zao spa (Exposure period: 6 months) (unit: mg/dm2/day)

			1 1	1	
	Exposure at the springhead	Immersion at the springhead	Exposure at an interior wall of the bathhouse	Exposure at an interior wall of the bathhouse	Immersion in the bath
Pure titanium	0	0	0	0	0
Stainless steel SUS 304	_	Melted*1	1.99	_	Melted*1
Ordinary steel product SS 400	46.22	Melted*1	41.55	19.33	Melted*1
Tough-pitch coated steel	73.66	165.94	64.83	17.11	31.77
Pure zinc metal	0.66	Melted*2	2.39	0.55	Melted*2
Aluminum 5052	0	74.77	0	_	109.49
Nickel	0.66	341.44	3.83	1.83	58.49

*1: Melted within 2 months *2: Melted after immersion of up to 10 days, -: abnormal value

(2) Results of surveys on acid rain by Nippon Steel

(research into application of titanium for the protection of cultural assets)

Copper has been applied as the material for roofing of shrines and Buddhist temples because the copper surface develops deep verdigris. However, deterioration of the environment such as acid rain is causing diverse problems. The adverse effect of acid rain on copper application lies in that unstable basic copper sulfate is formed rather than stable basic copper carbonate (verdigris). This phenomenon poses not only aesthetic but also corrosion problems, in particular pitting corrosion (raindrop corrosion) caused by the dripping

of acid raindrops. Further, the copper has a possibility of being corroded by decoction from mortar and fumigated tiles. Such corrosion and other problems affecting copper application have become a notable issue from the viewpoint of the protection of cultural assets and thus expectations are becoming high for titanium application.

(Application examples: priests' living quarters at Ikkyuji Temple, tea-ceremony houses at Koetsuji Temple, Naritaya and Yokuoin Temples, others)

Photo 1 shows the results of simulated raindrop corrosion tests by dripping synthetic acid rain (H2SO4:HNO3:HCl = 1.4:1.4 (mol ratio), pH = 4.6).

Photo 1. Metallic surfaces after simulated raindrop corrosion tests by dripping synthetic acid rain

9. Workability

(unit: ma/ka)

(1) Formability

There are no particular differences between titanium and ordinary and stainless steels. In the case of titanium JIS Type 1, it can be formed employing practically the same tools, jigs and machines used for ordinary and stainless steels. Due attention should be paid to the larger spring-back of titanium than ordinary and stainless steels.

(2) Weldability

Seam and spot welding can be applied to titanium under the same atmospheric conditions and manner as for stainless steel. When general welding methods (mainly TIG welding) are applied, stricter welding control than for stainless steel such as the necessity of argon gas shielding is required for titanium. There are no fears of weldment corrosion and stress-corrosion cracking.

(3) Bonding and adhesion performances Titanium's bonding with visco-elastic and sealing materials and adhesion to coating film are identical to those of stainless steel and aluminum.

10. Aesthetic variation

[Privileged features of TranTixxii]

[Privileged features of TranTixxii]

Designing titanium TranTixxii TranTixxii-ECO

Specification System (Material: Standards code)

				Ideat	ification			Textu	ure×Color×Form	1		Function					Main cl	nemica	l compos	ition				Tens	ile prop	erties						
No Classification Type Standards code					code*3	(×Texture)		(×Color) (>		(×Form)			н			E.	6	C :	C 11	NIL		T :	0.2%	Tensile	Florenting	Remarks	Application examples					
								Identification end code	Shape	9	Surface finis	sh	Coloring	Stabele Color	Workability	Function	c		0	N	Fe	Sn	Si	Cu	Nb	AI	Ti	proof stress	strength	Elongation		
				-TTX -TTXR	Cold Rolled Coil/Sheet	ND20 SD3 HL15	AD09 AD06 AD03	-	-																							
1	Standard type	Pure	JIS Type 1 ASTM/ASME			VP15	CD05	-	(Original design)	0	0	_	≦	≦	≦	≦0.03	≦0.2	_	_	_	_	_	Remainder	≧165	270	≧27		General, building exteriors, interiors,				
	TTX	titanium	Grade1	-TTXC -TTXCR	Cold Rolled Coil/Sheet	ND20 SD3 HL15	AD09 AD06 AD03 CD05	_	Soft Hard (Hard:only sheet)				0.08	0.013	0.15										-410			exteriors, others,				
	Flatness-oriented	Pure	JIS Type 1 ASTM/ASME	-TTXH -TTXHR	Cold Rolled Coil/Sheet	ND20	AD09 AD06 AD03 CD05	_	-	_	_		<	<	<										270			General, building exteriors,				
2	type TTXH	titanium	Grade1 (Those with t < 1.0 are MOD materials.)	-TTXHC -TTXHCR	Cold Rolled Coil/Sheet	ND20	AD09 AD06 AD03 CD05	_	Soft Hard (Hard:only sheet)	0	(Flatness- oriented)	ness- – nted)	- <u>≦</u> 0.08 (0.08 0.013	i3 0.15	≦0.03 0.15	≦0.2	.2 –	-	_	_	_	Remainder	≧165	-440	≧20	ir e	interiors, exteriors, others,				
		Pure	HYPERBETA (Nippon Steel's original standard)		Cold Rolled Sheet	-	-	HBM HBL	– Hard		-	-	≦ 0.08	≦ 0.013	≦ 0.15	≦0.03	≦0.2	-	-	_	_	-	Remainder	-	-	_		General, building exteriors, interiors, exteriors, others,				
3	Special design	titanium	IP GOLD TITANIUM (Nippon Steel's original standard)		Cold Rolled Sheet	ND20 'SD3 (TTX substrate)	-	HBM HBL (HBETA substrate)	IP Gold	-	-	-	≦ 0.08	≦ 0.013	≦ 0.15	≦0.03	≦0.2	-	-	_	_	-	Remainder	-	_	-		General, building exteriors, interiors, exteriors, others,				
	Good processing	Pure	JIS Type 1 ASTM/ASME Grade1	-TTXF -TTXFR	Cold Rolled Sheet	ND15 SD3 VP5	-	-	-	-	0	-	≦ 0.08	≦ 0.013	≦ 0.15	≦0.03	≦0.2	-	-	_	_	-	Remainder	≧165	270 -410	≧27		Drawn & formed				
4	type	titanium	JIS Type 2	-TTXF -TTXFR	Wire Rod	-	-	_	_	_	0	_	≦ 0.08	≦ 0.013	≦ 0.20	≦0.03	≦0.25	-	_	_	_	-	Remainder	≧215	340 -510	≧23	-	products				
5	Super good processing type TTXS	Pure titanium	SUPERPUREFLEX (Nippon Steel's original standard)	-TTXS	Cold Rolled Sheet	SD3	-	_	-	-	0	-	≦	≦	≦	≦0.03	≦0.2	-	-	_	_	-	Remainder	≧120	≧250	≧40		Complex molded products				
			JIS Type 1 ASTM/ASME Grade1	-TTXW -TTXWR	Cold&Hot Rolled Coil/ Sheet·Plate	SD3 No.1	-	-	-	-	-	-	≦ 0.08	≦ 0.013	≦ 0.15	≦0.03	≦0.2	-	-	-	-	-	Remainder	≧165	270 -410	≧27						
		Pure titanium	JIS Type 2	-TTXW -TTXWR	Cold&Hot Rolled Coil/	SD3 No.1	_	_	_	_	_	_	≦ 0.08	≦ 0.013	≦ 0.20	≦0.03	≦0.25	-	_	_	_	_	Remainder	≧215	340 -510	≧23	-					
6	For watches TTXW	citainain	ASTM/ASME Grade2	-TTXW -TTXWR	Sheet-Plate Cold&Hot Rolled Coil/	SD3 No.1	_	_	_	_	_	_	≤ 0.08	≦	≦		≦0.30	_	_	_	_	_	Remainder	275 -450	≧345	≧20	Material design intended for a bright gloss and color after	Watches				
	11AW		Super-TIX-M70 (Nippon Steel's original standard)	-TTXW -TTXW	Sheet-Plate Cold&Hot Rolled Coil/ Sheet-Plate	SD3 No.1	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	_	Remainder	-430			processing.					
		Titanium alloy	Super-TIX-20AFG** (Nippon Steel's original standard)	-TTXWK -TTXWR	Cold&Hot Rolled Coil/	SD3 No.1	_	_	(Original design)	_	○*2	Mirror surface property	_	-	_	_	_	_	_	_	_	_	Remainder	≧250	≧370	≧18	-					
			JIS Type 1 ASTM/ASME Grade1	-TTXA*1 -TTXAR*1	Sheet Plate Cold Rolled Coil/Sheet	SD3 No.1	_	_	_	_	_	-	≦ 0.08	≦ 0.013	≦ 0.15	≦0.03	≦0.2	_	_	_	_	_	Remainder	≧165	270 -410	≧27						
		Pure titanium	JIS Type 2	-TTXAR 1 -TTXA*1 -TTXAR*1	Pipe Cold Rolled Coil/Sheet·	SD3 No.1	_	_	_	_	_	_	≤	≦	≤		≦0.25	-	_	_	_	_	Remainder	≧215	340 -510	≧23		Mufflers, fuel tanks				
		c.ca.num	ASTM/ASME Grade2	-TTXA*1 -TTXA*1	Pipe Cold Rolled Coil/Sheet	SD3 No.1	_	_	_	_	_	_	≦	≤ 0.015	≦		≦0.30	_	_	_	_	_	Remainder	275 -450	≧345	≧20	Material design for aesthetic designs with					
7	For automobiles TTXA		Super-TIX10CSSN (Nippon Steel's original standard)		Pipe Cold Rolled Coil/Sheet	SD3 No.1	_	_	_	_		Heat resistance (maximum)	. ≦	-	0.23 ≦ 0.15	≦0.03	≦0.2	0.90	0.10 -0.50	0.8 -1.2	0.2 -0.5	0.2	Remainder	≥270	≧360	≧20	a beautiful, uniform and strong impression.					
		Titanium alloy	Super-TIX10CUNB (Nippon Steel's original standard)		Cold Rolled Coil/Sheet	SD3 No.1	_	_	_	_	○*2	Heat resistance (high)		-	0.15 ≦ 0.15	≦0.03	≦0.2		-	0.8	0.4	0.2	Remainder	≧270	≧360	≧35	-	Mufflers				
			Super-TIX10CU (Nippon Steel's original standard)		Cold Rolled Coil/Sheet	SD3 No.1	-	_	_	_	○*2	Heat resistance	≤ 0.08	-	0.13 ≦ 0.15	≦0.03	≦0.2	-	_	0.8	-	0.2 -0.5	Remainder	≧270	≧395	≧35	-					

(*1: Identification symbol "-TTXA" cannot be applied in actual use due to the relationship with users. *2: Products provide high strength, heat resistance and other functions as well as workability.)

*3: Standard with end trailing R Recycled Titanium Series / TranTixxii-ECO Applicable Standards

Wide range of options for various purposes

Designing titanium TranTixxii | Surface Finishes System (Texture × Color)

Texture Roll dull(Enbossed) Glossy Blasted Hairline Item SD3 ND20 ND15 AD09 AD06 AD03 CD05 HL15 Applicatio examples

Color

Texture×Color (The following introduces popular designs made by mixing the textures and colors shown above.)

				Application examples
Selections for traditional designs	Verdigris coloring Blast [AD09] and Interference color [Green]	Wood chips coloring Blast [AD03] and Interference color [Brown]	Brown coloring Blast [AD03] and Interference color [Brown]	
Selections for modern designs	Roll dull [ND20] and Interference color [Gold]	Roll dull [ND20] and Interference color [Blue]	Gloss [SD3] and Interference color [Pink]	

About Soft Color/Hard Color

There are two color variations for TranTixxii: Hard Color and Soft Color.

Hard Color is a solid and vivid color variation. Soft Color is characterized by a color variation with a soft and astringent texture.

In addition to color characteristics, there are differences in manufacturable dimensions, supply units, and quality characteristics.

[Supply Units] Hard Color is limited to small sheet products, while Soft Color can be mass-produced in coil units.

Mass production of colored titanium [Soft Color] in coil units is rare worldwide and is a distinctive feature of the TranTixxii brand. [Quality characteristics] Due to the characteristics of Soft Color products, there is a certain range of subtle variations and color unevenness in the actual product.

(Characteristics that create a special design that does not exist anywhere else) When placing an order for made-to-order products, please be aware of this feature in advance.

Due to this feature, when placing an order, a predetermined confirmation process including design sample comparison (color sample agreement) is required in advance.

Manifesting beauty in diverse ways

	5	6
2	Crystalization (HYPERBETA)	Others
	Hyperbeta	VP15

		2	3
		Object color	Others
		IP Gold	Original design (Black) *1
#80	#88	IP Gold	
#80	#88		Black
		Enoshima Station, Odakyu Railway Ryuou Shrine	

Designing titanium TranTixxii | Color features

Hotel Marques de Riscal (Spain) Surface: Roll dull (SD3) Gold & pink coloring Area: 2,400 m² Weight: 12 tons Completed: 2004

Principle of coloring of titanium

Coloring (Anodic oxidation)

When a thin oxide layer (colorless and transparent) is formed on the titanium surface by means of the anodic oxidation method, color can be seen as a result of interference of light. A wide range of colors can be produced by changing the film thickness.

Interference color: An optical phenomenon created by Co-work of "light" and a "transparent thin oxide layer (stratum of titanium oxide)"

This is the same principle as that of soap bubbles and rainbows in the natural world.

When using colored titanium, please understand the following points.

(1) The oxide layer on the surface of titanium is extremely thin, so the color tone is strongly influenced by the surface conditions of the base metal.

Titanium sheets that have different surface finishes may appear different in color, even if the titanium oxide layer formed on them is the same thickness. Also, even if sheets have the same surface finish, the color will differ slightly from one coil to the other due to the color differences of the base metal.

For this reason, in addition to checking the color using color samples, we ask you to check the color of the actual ordered material by coloring a part of the material prior to the actual coloring process. When you intend to use two or more coils, we recommend that you control the coils jointly with the fabricator so as to minimize color differences.

② Because titanium is colored by light interference, the color may sometimes appear different depending upon the season, weather, time of day and viewing angle.

When it rains, for example, the same color can look completely different. This is a feature of interference colors, and you may find that such a color change is a pleasing aspect of colored titanium.

Interference color features

③ The oxide layer may grow depending upon the weather atmospheric conditions, causing the color to change.

With our titanium products, before the development of STABLE COLOR (Less-Discoloration Technology) described below, there were cases in which the color of a material to which this technology was not applied changed from yellow (gold) to purple, whereas the materials to which the developed technology has been applied maintain their initial colors and tones even in properties built over 10 years ago.

However, please note that the colors of materials to which the technology has been applied may change with time depending upon the environmental and weather conditions. * The hue changes in the sequence of gray, yellow, purple, blue, olive green, yellow, purple and green, as the thickness of the oxide layer increases.

④ Titanium becomes dirty like other metals, and finger marks get on it.

Depending upon the type of extraneous matter (contamination), the titanium surface may appear discolored. Such contamination can be removed with detergent, but the material may not return to its original color due to the deposition of such matter (contamination). Please note that extraneous matter is likely to cause the color of colored titanium to change, especially in regions where much volcanic ash falls.

We recommend that you use a neutral detergent or our recommended detergent to clean titanium. Note that if you use a detergent that contains a strong acid or alkaline, the oxide layer on the surface may dissolve, preventing the original color from being restored. (See page 17.)

Designing titanium TranTixxii | Color features

Mechanism of discoloration

Explanation of discoloration

In the early 1990s, there were reports of phenomena in which the color of titanium roofing tiles changed from silver to brown in parts of constructed buildings. Titanium is colored by means of the formation of an oxide layer on its surface. The reported phenomenon is attributable to the fact that the oxide layer thickened due to acid rain and other environmental factors, resulting in a color change in which a silver color appeared brown due to the interference color of light.

* This phenomenon has nothing to do with titanium's corrosion resistance.

In 2001, at the start of the 21st century, Nippon Steel was the first in the world to successfully clarify the mechanism, thereby clearing a path toward titanium's evolution in the field of color, one of the element technologies of TranTixxii.

Mechanism of discoloration

As a result of an investigation of the discolored areas, a minute amount of carbide and fluorides was found to remain in the magnetized oxide layer and on the surface of the titanium base metal. Following various experiments, it was found that these substances react with acid rain, causing the film to grow. In addition, the higher the atmospheric temperature, the more pronounced is this trend.

(Scope: TTX, TTXH, TTXC, TTXHC, IPGOLDTITANIUM)

Effect of resistant-to-discoloration treatment

Okinawa is equivalent to the average value, Okinawa is one of Japan's most discoloration-prone regions due to its hot and humid climate.

The discoloration of designing titanium that does not readily become discolored is minimal even after 4 years of exposure.

STABLE COLOR

Points to note for STABLE COLOR (Less-Discoloration Technology)

This technology reduces the rate of growth of the oxide layer in a natural environment, and thus slows down the speed of discoloration. It does not stop discoloration from occurring.

A material that does not readily become discolored which was installed during or after 2000 and also a material that has been subjected to an exposure test have presently undergone little change in the base material or the color, and maintain a satisfactory condition.

World's Only 1: STABLE COLOR

	FRANTIXXII DESIGNING TITANIUM
	STABLE COLOR
TTX: Spe (Convent such per	ecific scope tional metals cannot provide formance.)
nodizing	Less-Discoloration Technology
stainless steel	Titanium discoloration
	General titanium
1	

* Color difference: 2 to 3

Untreated conventional material (much TiC)

* Color difference: 30 or more

It is considered that there is a possibility of discoloration occurring in tropical regions of high temperature and humidity or regions where severe acid rain falls.

Like other metals, titanium sometimes appears discolored due to dirt or finger marks. Contamination can be removed by carrying out appropriate cleaning. If the contamination is allowed to remain, it will become difficult to remove.

<Portfolio 1> Standard type & flatness-oriented type TTX TTXH TTXC TTXHC

Building exteriors

| Fuji Television Headquarters, Spherical Observation Room Surface: Roll dull (ND10), equivalent to gloss SD3 (ND10 (no longer offered)) Area: 2,800 m² Weight: 14 tons Completed: 1996

Hefei Lakeside International & Convention Center Surface: Roll dull (ND20) Area: 13,000 m² Weight: 21 tons Completed: 2011

Saemangeum Exhibition Center Surface: Roll dull (ND20) Area: 4,300 m² Weight: 10.4 tons Completed: 2011

Surface: Alumina blasting (AD03) Area: 700 m²

Weight: 1.2 tons Completed: 1997

2003 Good Design Award "Titanium temple roof/Titanium project for protecting historical buildings"

Fiscal 2004 Otani Art Museum Award "A roof made of dream material that has traditional beauty Alumina blasting finish titanium roofing and exterior materials"

National Showa Memorial Museum Surface: Alumina blasting (AD09) Area: 4,200 m² Weight: 56 tons Completed: 1998

Shimane Art Museum Surface: Pickled dull (VP20), equivalent to VP15 (PD25NX (no longer offered)) Area: 10,000 m² Weight: 60 tons Completed: 1998

Uchinada Town Office Surface: Roll dull (ND20) (green coloring) Area: 1,700 m² Weight: 6 tons Completed: 1998

Nara National Museum (No. 2 Annex) Surface: Alumina blasting (AD03), brown coloring Area: 6,000 m² Weight: 12 tons Completed: 1998

Ashitaka Shrine Surface: Alumina blasting (AD09), verdigris coloring Area: 440 m² Weight: 0.4 tons Completed: 2006

Sagawa Art Museum, Teahouse (Raku Kichizaemon-Kan) Surface: Alumina blasting (AD03) Area: 400 m² Weight: 1 ton Completed: 2007

Miyajidake Shrine Surface: Roll dull (ND20) Gold coloring Area: 220 m² Weight: 0.86 tons Completed: 2010

Building interiors, art, monuments

Flame Holder at the Nagano Winter Olympic Games Surface: Mirror surface Sheet thickness: 2.0, 3.0 mm Designed by: Kiyoyuki Kikutake (information sculptor) Installed by: Tig Completed: 1998

Sculpture "Koka" Surface: Mirror surface Sheet thickness: 3.0 mm Designed by: Minami Tada Constructed by: JV of Sakamoto, Ishizuka and partners Installed by: Minami Tada Associates Completed: 1994

Daichuji Temple Surface: Alumina blasting (AD03) Area: 660 m² Weight: 1.2 tons Completed: 2006

NIPPON STEEL CORPORATION

Chigasaki Southern C

Surface: Shot blasting Designed by: Kotobuki Installed by: Toho Technical Service Completed: 2002

National Grand Theater (China) Surface: Roll dull (ND20) Area: 43,000 m² Weight: 65 tons Completed: 2007

Taipei Arena (Taiwan) Surface: Roll dull (ND20) Area: 20,000 m² Weight: 50 tons Completed: 200

Hangzhou Grand Theatre (China) Surface: Roll dull (ND20) Area: 10,000 m² Weight: 15 tons Completed: 2003

Oita Sports Park Stadium Surface: Roll dull (ND20) Area: 32,000 m² Weight: 80 tons Completed: 200

| JR Hakodate Station Surface: Roll dull (ND20) Area: 1,000 m² Weight: 7 tons Completed: 2003

Hotel Marques de Riscal (Spain) Surface: Roll dull (SD3), gold and pink coloring Area: 2,400 m² Weight: 12 tons Completed: 2004

Kinkakuji Temple, Teahouse (Josokutei) Surface: Alumina blasting (AD003) Area: 100 m² Weight: 0.5 tons Completed: 2003

| Hozomon of Sensoji Temple Surface: Alumina blasting (AD03, AD06) Area: 1,000 m² Weight: 8 tons Completed: 2007

table

folding fan

写真:JR西日本テクノス WEST JAPAN RAILWAY TECHNOS CORPORATION

external appearance

small plate

Fujita Metal Corporation

TAKITA CORPORATION

SHINWA MEKKI CO., LTD.

bento box

SHINWA MEKKI CO., LTD.

NIPPON STEEL CORPORATION

Kyushu Railway Company "TWO STARS 4047"

lampshade

commemorative ticket

KUMAKURA SHIRRING

tray

ornament "kabuto"

YOSHIOKA BANKIN Corporation

Focus: TTX/TTXH Application technology to enable various usages

Reduction of color-tone from one lot to another

We have provided materials for a number of major properties. In the process, we have amassed the know-how in control technologies to make products in a sufficient quantity to extensively cover a large area, with the least possible variations in color tones between lots (coils).

In addition, we are also able to provide roofing and exterior-execution companies with information required for lot control.

A wealth of application technology

Distortion of the material after rolling is small, and the design performance as a roof is maintained.

- Sometimes during rolling, pocket waves occur on titanium. We have developed technology to reduce this phenomenon
- We have succeeded in significantly reducing pocket waves by carrying out the following subsequent to vacuum annealing.

(1) Performing skin pass rolling by using dull rolling. (2) Applying waves in advance to the edges of the titanium sheet.

Cleaning method (reference)

① Removing adhesive remaining on the protective film

- Wipe off adhesive using a sponge or cloth moistened with alcohol, benzene or thinners, or a mixed solution consisting of alcohol and toluene or acetone (in sequence from the weakest acting liquid). It is important to wipe the surface of the titanium with an unused, clean cloth before these solvents have dried.
- 2 Removing contamination due to finger marks or dirt from the hands In almost all cases, you can remove contamination using a neutral detergent or soapy water. If you are unable to do so, use an organic solvent (alcohol, benzene, etc.). In this case, you must observe the abovementioned precautions.
- ③ Removing contamination due to roofing material and concrete Wipe away contamination using a sponge or cloth moistened with a 5% solution of hydrochloric acid in water.
- ④ Removing contamination due to zinc from scaffolding material Wipe away contamination using a sponge or cloth moistened with a 15% solution of nitric acid in water.

(5) Removing contamination due to rainwater or dust

In almost all cases, you can wipe away contamination using a sponge or cloth moistened with a neutral detergent or an alkaline detergent. If you are unable to do so, you may be able to remove the contamination by applying a cleaner containing an abrasive to a soft cloth, and then rubbing gently and uniformly.

The above is a description of the various cleaning methods. In all cases, thoroughly wash the surface with water after cleaning, and ensure that no traces of cleaning agent remain.

6 Removing contamination from colored titanium

Of the abovementioned cleaning methods, do not remove contamination using hydrochloric acid, nitric acid or a cleanser, because the film that produces the color will be affected, preventing the surface from being restored to its original condition.

* Lot control

Base metal (uncoated) for use as a building material may often come in delicately varied color tones between manufacturing lots. Titanium is no exception. In order to prevent impairment of the class of the whole building by such an element, it is a common practice to use coils (panels) in the order of approximation and gradation in color to make color variations inconspicuous.

Kyushu National Museum

(Constructed by Sanko Metal Industrial Co., Ltd.)

Precautions for cleaning (reference)

①There are various causes and states of contamination and discoloration of designing titanium, so it is necessary to use a cleaning method that matches the particular circumstances. Do not abruptly start cleaning the entire surface. First carry out test cleaning on a small area, and check the removal of the contamination or discoloration. If the result of the test is satisfactory, use that method to clean the entire surface.

(2) When using a cleaning implement such as a cloth, sponge, loofah, scrubbing brush, cleaning brush or fine nylon pad, be sure to move it in the direction parallel to the polishing marks on the titanium. Also, move your hand in such a way as to apply a uniform force as far as possible. If you move the cleaning implement in circles, the contamination will be difficult to remove, and also the luster lines will be erased and color irregularity will occur, marring the appearance of the titanium surface.

③Even in the case of fairly stubborn contamination, avoid using a coarse polishing agent, sandpaper, steel wool or the like. Not only will this erase the luster lines on the titanium, but the surface will become scratched, which may cause it to become contaminated.

(1) When using a commercially available cleaning reagent to remove contamination from the surface of titanium, clean not only the contaminated part but also the vicinity as well. If you clean the titanium surface only partially, irregular color will occur, marring the appearance of the titanium.

5)When cleaning building tiles, marble or aluminum, if the cleaning reagent that you used splashes on the surface of the titanium, be sure to wipe away the reagent with a damp cloth. If you leave the reagent on the titanium, discoloration may occur.

⑥ In the case of colored titanium, consult with the manufacturer prior to cleaning

(Source: Japan Titanium Society)

<Portfolio 2> Special Finishing HYPERBETA & IPGOLD TITANIUM

M6B2 Tower of Biodiversity Location: Paris, France Designed by: Edouard François Completed: 2016 Product: Hyperbeta (green coloring) Product thickness: 0.4 mm

Vaison Edouard Francois and ©Pierre L'Excelle

Focus: IP GOLD TITANIUM Application technology to enable various usages

Color [Beauty of color] Coloring: Ion plating

suction force.

NIPPON STEEL CORPORATION

Ryuou Shrine Genre: Shrine, Buddhist temple, religion-related Usage: Roofing Surface finish: ND20 Color: Gold Material standard: IPGOLDTITANIUM

lon plating

Ion plating is technology to firmly coat a titanium surface with a titanium nitride compound, which is nearly as bright as real gold, by ionization and charging to add electric

The coated titanium nitride has satisfactory atomic stability as well as weather resistance and corrosion resistance from the base metal that are equivalent or superior to those of conventional titanium colored in gold. Further, it will not come off when bent.

<Portfolio 3> Formability Type/Super-FormabilityType TTXF TTXS

[Application example 1] **Snow Peak Inc.**

Snow Peak's titanium products use Tran Tixxii Titanium /Formability Type(TTXF) which is optimized for press forming in order to achieve both their Luxuryous Product Design & Product's Functionality (The lightness and heat/cold retention required for outdoor)

Single mug · Double mug

Aurora Bottle (Water Bottle)

[Application example 2] Fujifilm Corporation [FUJIFILM X-Pro3]

TranTixxii Titanium /Formability Type(TTXF) is used for the top cover and base plate parts of X-Pro3's body exterior, which require advanced aperture and overhang processing techniques. TTXF contributes to the realization of intricate designs with attention to detail while maintaining high strength.

Focus: TranTixxii-TTXF/TTXS

TranTixxi-TTXF/TTXS contributes to the realization of products with highly processed shapes and designs in the field of consumer products, such as outdoor goods (containers, etc.) and housings for electronic devices (PCs, digital cameras). Titanium is often referred to as a difficult-to-machine material. The crystal structure of titanium

(tight-lattice hexagonal crystal) is characterized by anisotropy, a low Young's modulus, and large

springback, so there have been problems with partial cracking and shape adjustment in press working.

TranTixxii-TTXF/TTXS is a material designed to solve these difficulties by pursuing optimal machinability and lubrication during stamping. This has enabled us to create a material that combines TranTixxii's characteristic design with excellent workability.

<Portfolio 4> For watches TTXW

Super-TIX20AFG Realization of high strength, a surface with elegant design performance and workability Focus:

Properties of Super-TIX20AFG

Rated item	Unit	Parameter	Super-TIX 20AFG	Pure Ti 2	SUS304	SUS316
Mirror surface property (Dol)	%	The higher the percentage, the higher the property.	0	\bigtriangleup	0	0
Density	g/cc	The lower, the lighter.	4.47	4.51	7.93	7.98
Electrical resistivity	μΩ·cm	The higher, the more sensitive the radio waves.	95	45	72	74
Relative permeability (annealed material)	_	The closer to 1, the more sensitive the radio waves.	1.0002	1.0002	1.004	1.003
Vickers hardness	HV1.0	The higher, the harder.	203	120	170	170
Seawater corrosion resistance	_		0	0	x	\triangle
Comprehe	0		Δ	0		

Cutting workability (drill-cutting)

Providing cutting workability superior to that of conventional materials with appropriate hardness.

20

NIPPON STEEL CORPORATION

[Application example] Casio Computer Co., Ltd. A full mirror-finish was provided for the first time to the G-SHOCK titanium model with a high mirror surface property by presenting

Microstructure

Providing a mirror surface property with micron level structure control.

<Portfolio 5> For automobiles TTXA heat-resistant alloy series

Application to the muffler of NISSAN GT-R

Application to the fuel tank of HONDA's off-road bike CRF450R (TP270C)

Focus: Provision of high performance and excellent design

Realizing both high performance and excellent design with the world's No. 1 titanium alloy

• Realizing both high performance and excellent design with the world's No. 1 titanium alloy

Specific gravity 7.9 g the engine ince Stainless stee	Competitor'		ravity 4.51 (weight	reduction)	
nce	Competitor'	s titanium A		TranTixxii TTXA Series Super-TIX10CSSN Super-TIX10CUNB	
Stainless stee	Competitor	s titanium A		Super-TIX10CSSN Super-TIX10CUNB	
Stainless stee	Competitor	s titanium A		Super-TIX10CUNB	
				Super-TIX10CU	
			ASTM Gr2 JIS TP340C	ASTM Gr2 TTXA JIS TP340C TTXA	
	Workabil	ity: Low		Workability: Good Workability (Good)	
			!	Elegant surface appearance Design	
erformance)			Automobile Design (worka	x weight reduction ability, elegant surface appearance)	e)
alloy exhibits e terms of the o	perties excellent exidation st system	Cross-section near the surfa High-temperatu resistant proper	of exposed area ace re oxidation ties of titanium	Oxidized scale	NB
	erformance) ng to autom erature esistant pro alloy exhibits e terms of the c uired for exhau	erformance) ng to automobile desig erature esistant properties alloy exhibits excellent terms of the oxidation uired for exhaust system	erature esistant properties alloy exhibits excellent terms of the oxidation uired for exhaust system erature esistant properties alloy for muffler	action night performance = Automobile and to automobile design = Design (work: Designed ar erature = At 800°C for 100 hours cross-section of exposed area near the surface alloy exhibits excellent High-temperature oxidation uired for exhaust system High-temperature oxidation	attain high performance enformance) performance engine (high-temperature resistanc Automobile weight reduction Design (workability, elegant surface appearance) mg to automobile design Design (workability, elegant surface appearance) Designed and formed more freely erature esistant properties alloy exhibits excellent terms of the oxidation uired for exhaust system At 800°C for 100 hours Cross-section of exposed area near the surface High-temperature oxidation resistant properties of titanium alloy for mufflers Image: Design of the oxidation resistant properties of titanium alloy for mufflers

Our original Super-TIX10CU and 10CUNB demonstrate high Super-TIX10CU and 10CUNB demonstrate fatigue strength temperature strength about 1.5 times and our Super-TIX10CSSN about twice that of pure titanium at 600 and 700° C, respecabout 1.8 times that of pure titanium in an atmosphere of tively, and our Super-TIX10CSSN about thrice that of pure 700°C. titanium.

urs oosed area		Oxidized scale
ition itanium	100µm	10 <u>0µm</u>
	JIS Type 2 pure Ti	Super-TIX10CUNB

<Reference materials>

Order	Elemen	t	Existing ratio (%)	Accumulated total
1	Oxygen	0	49.50	49.5
2	Silicon	Si	25.80	75.3
3	Aluminum	AI	7.56	82.9
4	Iron	Fe	4.70	87.6
5	Calcium	Ca	3.39	91.0
6	Sodium	Na	2.63	93.6
7	Potassium	К	2.40	96.0
8	Magnesium	Mg	1.93	97.9
9	Hydrogen	н	0.87	98.8
10	Titanium	Ti	0.46	99.2
11	Chlorine	CI	0.19	99.4
12	Manganese	Mn	0.09	99.5
13	Phosphorus	Р	0.08	99.6
14	Carbon	С	0.08	99.7
15	Sulfur	S	0.06	99.7
16	Nitrogen	N	0.03	99.8
17	Fluorine	F	0.03	99.8
18	Rubidium	Rb	0.03	99.8
19	Barium	Ba	0.02	99.9
20	Zirconium	Zr	0.02	
21	Chromium	Cr	0.02	
22	Strontium	Sr	0.02	
23	Vanadium	V	0.015	
24	Nickel	Ni	0.010	
25	Copper	Cu	0.010	
26	Tungsten	W	0.006	
27	Lithium	Li	0.006	
28	Cerium	Ce	0.005	
29	Cobalt	Co	0.004	
30	Tin	Sn	0.004	↓
(Note) Clarke number: The ratio of elements found in the upper layer of the earth's crust. Named after the American geochemist F. W. Clarke. (Source: The Chemistry Encyclopedia Kagaku Daijiten) Titanium is the 10th most common element found in the upper layers of the earth's crust, and in terms of metals that are of practical use, it comes fourth after				

ms of metals that are of practical use, it comes fourth aluminum, iron and magnesium.

Website information www.nipponsteel.com/en/product/trantixxii/ Tel +81-3-6867-5635 Mail Email us from "Contact" on the website. Q TranTixxii Q Designing titanium Customer registration & requests for information materials www.nipponsteel.com/en/product/ trantixxii/contact Sample Purchase

Outdo (>30y

Out

Brands for Design Use/URL

PIGMENT

Titanium	Tran Tix xii Designing titanium	NIPPON STEEL CORPORATION Designing Titanium TranTixxii (Titanium Material for Design & Luxury) https://www.nipponsteel.com/en/product/trantixxii/
Stainless Steel	Fine	NIPPON STEEL Stainless Steel Art Corporation Fine-Color https://www.ms-art.co.jp/en/products/fine-color/
Stainless Steel	ノイエスNEUES	NIPPON STEEL Stainless Steel Art Corporation Neues https://www.ms-art.co.jp/en/products/neues-1/ https://www.ms-art.co.jp/en/products/neues-2/
Stainless Steel	NSSC FW series	NIPPON STEEL CORPORATION NSSC FW series https://www.nipponsteel.com/en/product/stainless/nssc/campaigns/fw/
Stainless Steel	NSSC 270	NIPPON STEEL CORPORATION NSSC 270 (Super Austenitic Stainless Steel) https://www.nipponsteel.com/en/product/stainless/
Stainless Steel	NSSC 220M	NIPPON STEEL CORPORATION NSSC 220M (Highly Weather-resistant Ferritic Stainless Steel) https://www.nipponsteel.com/en/product/stainless/
Stainless Steel	NSSC Duplex	NIPPON STEEL CORPORATION NSSC Duplex series (NSSC2120, NSSC2351) https://www.nipponsteel.com/en/product/stainless/
Stainless Steel		NIPPON STEEL CORPORATION Colxam (color coated stainless steel) https://www.nipponsteel.com/product/stainless/nssc/campaigns/colxam/
Steel	Feluce	NIPPON STEEL CORPORATION FeLuce (Electroplated Steel Sheet) https://www.nipponsteel.com/en/product/feluce/
Steel		NIPPON STEEL CORPORATION BLACK ZAM (Hot-dip Coated Steel Sheet) https://www-zam.nipponsteel.com/en/
Steel	ビューコート	NIPPON STEEL CORPORATION VIEWKOTE (Pre-coated Steel Sheet) https://www.nipponsteel.com/product/viewkote/
Steel	ニスクカラー Pro	NIPPON STEEL COATED SHEET CORPORATION Nisc-color Pro https://www.niscs.nipponsteel.com/products/kohan/color/nisccolor-pro.html
Steel	COR-TEN	NIPPON STEEL CORPORATION COR-TEN (Weathering Steel) https://www.nipponsteel.com/en/product/plate/list/04.html
Steel	VINCOR	NIPPON STEEL CORPORATION VINCOR (Weathering Steel) https://www.nipponsteel.com/en/product/plate/list/04.html
Steel	Hot Extruded Steel Shapes	NIPPON STEEL CORPORATION Hot Extruded Steel Shapes (Free-design/custom-made design steel shapes and bar materials https://www.nipponsteel.com/en/product/pipe/list/06.html

Seawater-aerated atmospheric conditions (25°C)

NIPPON STEEL GROUP/Brands for Design Use

	NSSC 220	NSSC 270 M	CODD DESIGN AWARD 2021
	Outdoor service life limit of average paint	Fime	
ビューコート			
	CC 5510M 2020	ITIZmung	
onable	Price		Luxury

[Vertical]Service life × [Horizontal]Price