

www.nipponsteel.com

and Pipes for **Boilers**

NIPPON STEEL CORPORATION

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111

Seamless Steel Tubes and Pipes for Boilers P008en_03_202004f © 2019, 2020 NIPPON STEEL CORPORATION

Contents

Introduction Every type of steel tube and pipe can be manufactured	
Every type of steel tube and pipe can be manufactured.	2
NIPPON STEEL Boiler Steel Tubes and pipes Activity	
Three Mainstays of Reliability	6
2 Quality assurance system	
3 Research and development system	
Developed Seamless Tubes and Pipes Products for Bollers	
5-1EN 1	18
Developed Seamless Tubes and Pipes Products for Boilers S-TEN™1 CR1A HCM2S™	
Gr92 (NF616)	
TP347HFG	
SUPER 304H™	
XA704	
NF709	25
HR3C	26
YUS™170	27
MN25R	
HR6W	
Available Size Range (Example)	
Example of Packing	
Example of Indication Requests during orders	
Requests during orders	

Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information.

Please refrain from unauthorized reproduction or copying of the contents of this publication.

The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

Introduction

We have been manufacturing boiler steel tubes and pipes used in all fields, mainly power generation boilers, up to the present day, ever since we first started manufacturing seamless steel tubes for boilers for the first time in Japan in 1912.

During this time, higher temperatures and pressures and larger-capacity boilers have been developed and have undergone rapid technological innovations, together with changes in fuel conditions. Recently in particular, high-efficiency generation has been demanded in order to control total carbon dioxide emissions, from the viewpoint of the worldwide conservation of the global environment, and ultra-supercritical pressure boilers, pressurized fluidized bed boilers, gas turbine-combined power generation boilers, and high-efficiency industrial waste incineration boilers have been constructed one after another, as new thermal power generation boilers. Steel tubes and pipes, to be used to respond to these situations, have been demand to maintain both high quality and high performance. There has also emerged a need for various steel tubes and pipes such as economic steel tubes and specially-shaped steel tubes.

In rapid response to these requests, as an advanced manufacturer of boiler steel tubes and pipes, we have aggressively proceeded with the development of new materials, improvement of production technology, installation of new facilities, and improvement of inspection and quality control technologies.

We are confident that our boiler steel tubes and pipes will fulfill your expectations in every aspect, such as quality, performance, and access to service networks across various countries.

Every type of steel tube and pipe can be manufactured.

A power generation boiler consists of an economizer, a furnace (evaporator), a superheater tube, a reheater tube, a main steam pipe, a reheat pipe, a water feed pipe, and a feed water heater tube.

We manufacture various carbon steel, alloy steel, and stainless steel tubes and pipes to suit the usage conditions of these pieces of equipment. In addition to JIS standard products, we also manufacture foreign standard products such as ASME (ASTM), EN, and DIN, along with our own proprietary special products.

Power plant system diagram

Typical steel grades and main application examples

				Applicable Standa	ards (abbreviation)			Ap		catio			
Steel grade	Compositions	Our own developed steel	ASTM (U.S.)	EN (U.K.)	DIN (DE)	JIS (JP) Thermal power standard (T)	(1)Economizer tube	(2)Evaporator	(3)Superheater tube	(4)Reheater tube	(5) Main steam tube	(6)Reheat pipe	(7,8)Feed water heater tube	(9)Water feed pipe
Sulfuric acid corrosion-	S-TEN™1 (0.3Cu-0.1Sb)	0	A423, Gr.3 (ASME CC2494)			KA-STB380J2			onor neat		er ar	and air		
resistant steel	CR1A (1.25Cr-0.3Cu)	0				KA-STBA10			onor neat		er ar	nd a	.ir	
Carbon steel	0.15-0.25C		A53-Gr.A、B A106-Gr.A、B A178-Gr.A、C A192		St45 St45.4 St45.8 C22	STB340(STB35) STB410(STB42) STB510(STB52) STPT370(STPT38) STPT410(STPT42)	0						0	
	0.25-0.35C		A210-Gr.A-1 A106-Gr.C A210-Gr.C		St55 St55.4	STPT480(STPT49)	0	0					0	0
	0.3-0.5Mo		T1, T1a P1		15Mo3 16Mo5	STBA12、13 STPA12		0	0	0			0	
	0.5Cr-0.5Mo-V				14MoV63	011 A12			0	0		0		
	0.5Cr-0.5Mo		T2 P2			STBA20 STPA20		0	0	0		0		
Low-alloy steel	1Cr-0.5Mo		T12 P12		13CrMo44	STBA22 STPA22		0	0	0		0		
	2.25Cr-1Mo		T22 P22		10CrMo910	STBA24 STPA24			0	0	0	0		
	HCM2S ^{™*} (2.25Cr-1.6W-V-Nb)	0	T23 P23 (ASME CC2199)	—	_	KA-STBA24J1 KA-STPA24J1			0	0	0	0		
	9Cr-1Mo		T9 P9		X12CrMo91	STBA26 STPA26			0	0	0	0		
High chrome	9Cr-1Mo-V-Nb		T91 P91	—	X10CrMoV Nb9-1	KA-STBA28 KA-STPA28			0	0	0			
ferritic steel	NF616 (9Cr-1.8W-V-Nb)	0	T92 P92 (ASME CC2179)	VdTÜV 552/2	X10CrWMoV Nb9-2	KA-STBA29 KA-STPA29			0	0	0			
	12Cr-1Mo-0.3V			_	X20CrMoV121				0	0	0			
	18Cr-8Ni		TP304 TP304H		X5CrNi89 X6CrNi1810	SUS304 SUS304H			0	0			0	
	18Cr-8Ni-Ti		TP321 TP321H		X6CrNiTi189 X8CrNiTi1810	SUS321 SUS321H			0	0				
	18Cr-8Ni-Nb		TP347、TP347H TP348、TP348H		X6CrNiNb189	SUS347 SUS347H			0	0				
	TP347HFG (18Cr-11Ni-0.6Nb)	0	TP347HFG	VdTÜV 547/2	X8CrNiNb1811				0	0				
	SUPER304H™ (18Cr-9Ni-3Cu-V-Nb)	0	UNS S30432 (ASME CC2328)	VdTÜV 550/2	X10CrNiCuNb 189	KA-SUS304J1HTB			0	0				
Austenitic stainless steel	XA704 (18Cr-9Ni-2W-V-Nb-N)	0	UNS S34705 (ASME CC2475)	VdTÜV 554/2		KA-SUS347J1TB			0	0				
stainless steel	16Cr-14Ni-2.5Mo		TP316 TP316H		X5CrNiMo 17132	SUS316 SUS316H			0	0				
	NF709 (22Cr-25Ni-1.5Mo-Nb-N)	0	TP310MoCbN (ASME CC2581)	VdTÜV 563/2	X6CrNiMo 17132	KA-SUS310J2TB			0	0				
	HR3C (25Cr-20Ni-Nb-N)	0	TP310HCbN (ASME TP310HCbN)	VdTÜV 546/2	X6CrNiNbN 2520	KA-SUS310J1TB			0	0				
	YUS™170	0				KA-SUS309J1TB			0	0				
	MN25R*	0	TP309LMoN (ASME CC2639)			KA-SUS309J3LTB			0	0				

* HCM2S and MN25R were developed jointly with Mitsubishi Heavy Industries, Ltd.

NIPPON STEEL Boiler Steel Tubes and pipes Activity

Three Mainstays of Reliability

Research and 3 development system Boiler tubes and pipes require extremely superior guality and a variety of steel grades and dimensions suited to usage situations.

To fully meet these requirements, our boiler tubes and pipes have emerged from a secure system through years of experience and foremost engineering prowess, as a backdrop.

They are manufactured based on an integrated production system and on strict quality design and quality control, ranging from raw materials to final products.

In line with diversifying needs, we are developing new materials and products, and are conducting a wide variety of research and development, including manufacturing process research.

Thus, our boiler tubes and pipes that have a superior track record and receive a high level of trust, all based on three mainstays : Integrated production, quality assurance, and research and development.

Integrated production system

Our boiler tubes and pipes are consistently controlled, from steel-making to tube and pipe-making, in order to ensure the manufacturing of all steel grades, as well as to assure uniform and stable quality, through strict quality control during each process.

Particularly, steel-making processes, from component mixture to final heat treatment, undergo optimum quality design regarding boiler steel tubes and pipes, by putting years of experience and high engineering prowess to full use so that products can endure long usage periods of one or two decades. In order to bring the quality design into shape, a new refining method in steel-making is introduced and various manufacturing processes are selected according to dimensions, material properties, and internal and external surface accuracy.

Seamless steel tubes and pipes are hot manufactured using

Manufacturing process of boiler steel tubes and pipes

NIPPON STEEL CORPORATION

mandrel mill-rolling process, extrusion process, and push bench process.

The mandrel mill-rolling process is used to manufacture small-diameter carbon steel tubes and low-alloy steel tubes. The extrusion process is used to manufacture high-alloy steel tubes, such as stainless steel, and special tubes, such as finned tubes. The push bench process is suited for manufacturing large-diameter, thick-wall tubes, and enables the manufacturing of carbon steel, alloy steel, and stainless steel tubes and pipes.

These hot manufactured tubes are cold finished using cold-drawing and cold-rolling processes that fit the applications and thermal treatments.

1 Integrated production system

Manufacturing process of seamless steel tubes and pipes

(Some steel grades are not applicable in the following flow.)

Product	Works	Manufacturable range (outside diameter)	Feature
Hot-finished seamless steel tubes and pipes	Kansai Works Wakayama area	31.8 ~426.0mm	 The tube manufacturing efficiency is high. The surface is smooth, and thickness deviation is small.
Hot-finished seamless steel tubes and pipes Special steel shapes tubes and pipes	Kansai Works Amagasaki area Kyushu Works Oita area(Hikari Pipe & Tube Div.)	33.4 ~275.0mm 33.4 ~175.0mm Outside diameter 275 mm or less Minimum cross- section area 100 mm ²	 High alloy, stainless steel, and special metal tubes and pipes can be manufactured. Various special steel shapes tubes and pipes can be manufactured by changing die and mandrel shapes. An order for small- lot and multiple- product types can be filled.
Hot-finished seamless steel pipes Large welded joint	Kansai Works Amagasaki area BENKAN KIKOH Corporation	165.2 ~1270.0mm 21.7 ~914.4mm	 This product is suited for manufacturing large-diameter, thick-wall steel pipes. The external and internal surfaces can be machined.
Cold- finished seamless steel tubes and pipes	Kansai Works Amagasaki area Kansai Works Wakayama area(Kainan) Kyushu Works Oita area(Hikari Pipe & Tube Div.)	6.0 ~508.0mm 15.9 ~127.0mm 6.0 ~168.3mm	 The dimensions are accurate, and their dispersion is small. The external and internal surfaces are finely finished.

1 Integrated production system

Vacuum-oxygen decarburization process (VOD)

Vacuum degassing process (RH)

Mandrel mill

Vertical piercing press

Horizontal extrusion press

2 Quality assurance system

Boiler tubes and pipes are strongly demanded in order to satisfy especially strict usage conditions, along with operational reliability. We conduct strict quality control in all processes, from steelmaking to tube and pipe-making, and we have established the following quality assurance system.

1. Independence of the quality assurance department

The quality assurance department is independent from the manufacturing department and has primary authority and responsibility concerning quality in order, to take charge of ensuring such quality.

2. Standardization of tasks

Various tasks related to manufacturing and quality are standardized and documented for unification.

3. Adoption of a inspector qualification system

All inspections engaged in work affecting quality have received strict training and have passed a qualification test.

4. Full adoption of nondestructive tests

Various required tests and inspections are conducted according to applications, and nondestructive tests are applied to all products in the final inspection.

5. Establishment of periodic gauges and tester calibration systems

Various gauges and testers are periodically calibrated to ensure quality inspection.

Eddy current test

Water-immersion ultrasonic test

Spark test

Flattening test

3 Research and development system

Our boiler tubes and pipes have been used the world over, embodying various characteristic products through distinguished engineering prowess and abundant experience, and they have earned high reputation and trust not only in Japan but also overseas.

It is no exaggeration to say that this is also a good result of systematic research and development systems, ranging from raw materials to products.

At present, with the aim of a further leap forward, we are proceeding with research from the following broad angles.

- Research on high-temperature creep strength properties
- Research on high-temperature corrosion protection materials
- Research on coal-fired steel tube materials
- Research on weldability and workability
- Research on manufacturing processes for quality stability
- Research on nondestructive inspection and measurement technologies

We will also further improve the research department and enhance its functions, and will strive to help promote global iron-making in future.

Creep and rupture test

Ion microprobe mass analyzer (IMMA)

High-temperature fatigue test

Internal pressure creep tester

Internal pressure creep test specimen and rupture position

Developed Seamless Tubes and Pipes Products for Boilers

Main proprietary steel grades

			Applicable star	ndard (a	bbreviation)						compo	ositions(mass	:%)				Normal-ten	nperature te	ensile property
Classification	Brand name	Compositions	ASTM/ASME	EN, etc.	JIS/METI standard	Characteristics • Example of application	С	Si	Mn	Р	S	Ni	Cr	Мо	N	Others	TS, min. MPa	YS, min. MPa	. EL, min. %
	S-TEN™1	0.3Cu-0.1Sb	ASTM A423 Gr.3 ASME CC 2494		KA-STB380J2 KA-STPT380J2	Sulfuric and hydrochloric acid dew-point corrosion-resistance steel • ERW tubes, seamless tubes, and heat exchanger tubes	0.14max.	0.55max.	1.60max.	0.025max.	0.025max.	0.50max.		0.20max.		Cu: 0.25-0.50 Sb: 0.15max.	380	230	35/30
	CR1A	1.25Cr-0.3Cu			KA-STBA10	Sulfuric acid dew-point corrosion-resistance steel • ERW tubes, seamless tubes, and heat exchanger tubes	0.10max.	0.20-0.80	0.80max.	0.025max.	0.015-0.030		1.00-1.50			Cu: 0.25-0.35	410	255	25
Ferritic steel tubes and pipes Carbon steel tubes	HCM2S™	2.25Cr-1.6W- V-Nb	ASTM A213 T23/A335 P23 ASME CC 2199		KA-STBA24J1 KA-STPA24J1	 High-strength 2.25Cr ferritic steel tubes Heat exchanger tubes and header pipes for heat recovery steam generator Thermal power generation boiler pipes, superheater tubes, and reheater tubes 	0.04-0.10	0.50max.	0.10-0.60	0.030max.	0.010max.		1.90-2.60	0.05-0.30	0.030max.	W : 1.45-1.75 V : 0.20-0.30 Nb : 0.02-0.08 sol.Al : 0.030max. B : 0.0005-0.0060	510	400	20
Low-alloy steel tubes High chrome steel tubes and pipes	[Gr.91] Developed by U.S. Oak Ridge National Laboratory	9Cr-1Mo-V-Nb	ASTM A213 T91/A335 P91 ASME SA-213 T91/ SA-335 P91		KA-STBA28 KA-STPA28	 High-strength, high-Cr steel tubes (This product was commercialized as a world-first.) Main steam pipes, headers, reheat pipes, superheater tubes, and reheater tubes of thermal power generation boilers Heat exchanger steel tubes for the chemical industry 	0.08-0.12	0.20-0.50	0.30-0.60	0.020max.	0.010max.	0.40max.	8.00-9.50	0.85-1.05	0.030-0.070	V : 0.18-0.25 Nb : 0.06-0.10 sol.Al : 0.04max.	590	410	20 hardness HRC ≤ 25
	Gr.92(NF616)	9Cr-1.8W-V- Nb	ASTM A213 T92/A335 P92 ASME SA-213/SA-335 CC2179		KA-STBA29 KA-STPA29	World's highest-strength, high-Cr steel tubes ● Main steam pipes, headers, reheat pipes, superheater tubes, and reheater tubes of ultra-supercritical pressure boilers	0.07-0.13	0.50max.	0.30-0.60	0.020max.	0.010max.	0.40max.	8.50-9.50	0.30-0.60	0.030-0.070	W : 1.50-2.00 V : 0.15-0.25 Nb : 0.04-0.09 sol.Al : 0.04max. B : 0.001-0.006	620	440	20 hardness HRC ≤ 25
	TP347HFG	18Cr-12Ni- 0.6Nb	ASTM A213TP347HFG (S34710) ASME SA-213 TP347HFG	VdTÜV 547/2	,	Superior steam oxidation resistance 18Cr austenitic stainless steel tubes with fine-grained microstructuer using an original process • Superheater tubes and reheater tubes of ultra-supercritical pressure boilers • Heat exchanger tubes of biomass boilers	0.06-0.10	0.75max.	2.00max.	0.045max.	0.030max.	9.0-13.0	17.0-19.0			8×C-1.10	550	205	35
	SUPER304H™	18Cr-9Ni-3Cu- Nb-N	ASTM A213 (S30432) ASME SA-213 CC2328	VdTÜV 550/2	Y KA- SUS304J1HTB	Superior steam oxidation-resistance and high-strength 18Cr austenitic stainless steel tubes • Superheater tubes and reheater tubes of ultra-supercritical pressure boilers	0.07-0.13	0.30max.	1.00max.	0.040max.	0.010max.	7.50-10.50	17.00-19.00		0.05-0.12	Cu : 2.50-3.50 Nb : 0.30-0.60	590	235	35
	XA704	18Cr-9Ni-2W- Nb-V-N	ASTM A213 TP347W (S34705) ASME CC 2475	VdTÜV 554/2	KA-SUS347J1TB	Excellent intergranular corrosion resistance, high-strength 18Cr sustenitic stainless steel tubes 0. Superheater tubes and reheater tubes		1.00max.	2.00max.	0.040max.	0.030max.	8.0-11.0	17.0-20.0	-	0.10-0.25	Nb : 0.25-0.50 V : 0.20-0.50 W : 1.50-2.60	620	260	30
	NF709	22.5Cr-25Ni- 1.5Mo-Nb-N	ASTM A213 TP310MoCbN(S31025) ASME CC 2581	VdTÜV 563/2	KA-SUS310J2TB	igh-strength 20 to 25Cr austenitic stainless steel tubes 0 Superheater tubes and reheater tubes 0 Heat exchanger tubes of refuse incineration and biomass boilers 0		1.00max.	1.50max.	0.030max.	0.030max.	23.0-26.0	19.5-23.0	1.0-2.0	0.10-0.25	Nb : 0.10-0.40 Ti : 0.20max. B : 0.002-0.010	640	270	30
Austenitic stainless steel tubes and pipes	HR3C	25Cr-20Ni- Nb-N	ASTM A213 TP310HCbN(S31042) ASME SA-213 TP310HCbN	VdTÜV 546/2	KA-SUS310J1TB	 High-strength 25Cr austenitic stainless steel tubes Superheater tubes and reheater tubes Heat exchanger tubes of black liquor recovery, refuse incineration, and biomass boilers 	0.10max.	1.50max.	2.00max.	0.030max.	0.030max.	17.00-23.00	23.00-27.00		0.15-0.35	Nb : 0.20-0.60	660	295	30
	YUS™170	25Cr-13Ni- 0.8Mo-0.3N			KA-SUS309J1TB	 High-corrosion-resistance 25Cr austenitic stainless steel tube Heat exchanger tubes of black liquor recovery and refuse incineration boilers Heat exchanger tubes and pipes for the chemical industry 	0.06max.	1.50max.	2.00max.	0.040max.	0.030max.	12.00-16.00	23.00-26.00	0.50-1.20	0.25-0.40		690	345	40
	HR2M(HR2EL)	22Cr-14Ni- 1.5Mo-N			KA-SUS309J2TB	High-corrosion-resistance 22Cr austenitic stainless steel tubes • Heat exchanger tubes of black liquor recovery and refuse incineration boilers	0.04max.	1.00max.	2.50-3.50	0.030max.	0.030max.	12.50-15.50	21.00-23.00	1.00-2.00	0.10-0.25		590	245	35
	MN25R	25Cr-14Ni- 0.8Mo- 0.3N-LC-Low Si	ASTM A213 TP309LMoN (S30925) ASME CC 2639		KA-SUS309J3LTB	High-corrosion-resistance 25Cr austenitic stainless steel tubes • Heat exchanger tubes of black liquor recovery boilers	0.025max.	0.70max.	2.00max.	0.040max.	0.030max.	13.0-16.0	23.0-26.0	0.5-1.2	0.25-0.40		640	260	30
	HR11N	29Cr-42Ni- 1Mo-N	ASTM B407 (N06811) ASME SB-407 CC2518			High-corrosion-resistance, Ni-based alloy tubes Heat exchanger tubes of waste to energy plant and black liquor recovery boilers	0.03max.	0.60max.	2.00max.	0.030max.	0.010max.	38.0~46.0	27.0~31.0	0.50-1.50	0.10-0.20		585	240	30
Ni-based alloy	SUPER625	22Cr-50Ni- 9Mo-Nb	ASTM B444 (N06852) ASME SB-407 CC2520			 High-corrosion-resistance, Ni-based alloy tubes Heat exchanger tubes of waste to energy plant black liquor recovery boilers 	0.05max.	0.50max.	0.50max.	0.015max.	0.015max.	Bal.	20.0~23.0	8.0-10.0		Fe : 15.0-20.0 Ti : 0.40max. Al : 0.40max.	585	240	30
tubes and pipes	HR6W	23Cr-45Ni- 7W-Ti-Nb	ASTM B167 (N06674) ASME SB-167 CC2684	VdTÜV 559/2		 High-strength, high-corrosion–resistance, Ni-based alloy tubes for next-generation A-USC boilers Main steam pipes, reheat pipes, superheater tubes, and reheater tubes. 	0.10max.	1.0max.	1.50max.	0.030max.	0.015max.	Bal.	21.5~24.5		0.02max.	Fe : 20.0-27.0 W : 6.0-8.0 Ti : 0.05-0.20 Nb : 0.10-0.35 B : 0.0005-0.006	590	235	30

* HCM2S, and MN25R were CC : Code Case () is the UNS developed jointly with Mitsubishi Heavy Industries, Ltd.

) is the UNS MITI means Ministry of Economy, Trade and Industry

S-TEN[™]1

Sulfuric and hydrochloric acid dew-point corrosion-resistant steel tubes

High

Low

1,000

Exhaust gas

temperature

gas

Conventional flue-treatment equipm

180°C

Exhaust gas temperature

130~150°C

-gas ipme

flue-equi

ent

Occurrence of hydrochloric acid dew-point corrosion!

Hydrochloric acid resistance (10.5%, 80°C HCl)

Rapid cooling and lowering of

acid

.<u>c</u>

sulft

5

D D

144hr

exhaust gas temprature for

136°C

Occurrence of

sulfuric acid

dew-point corrosion!

reducing dioxins.

There are cases where the exhaust gas treatment equipment of waste combustion facilities or boiler air preheaters using fuel containing sulfur and chlorine is subjected to sulfuric and hydrochloric acid dew-point corrosion. In such an acid dew-point corrosion environment, not only common steel but also stainless steel cannot be used.

We have thus developed S-TEN[™] as a material that can be used in such an environment, and we manufacture and sell S-TEN™1 steel tubes.

S-TEN™1 steel tubes can be used as METI "KA-STB380J2," "KA-STPT380J2," "ASME Code Case 2494" and "ASTM A423 Gr.3." They are also certified by classification societies such as NK(Japan), LR(United Kingdom), and TÜV(Germany).

	С	Si	Mn	Р	S	Cu	Sb	Ni
S-TEN1	≦0.14	≦0.55	≦1.60	≦0.025	≦0.025	0.25~0.50	≦0.15	≦0.50

Quality property

Corrosion resistance

Sulfuric acid resistance (50%, 70°C H₂SO₄)

Steel tube corrosion test sample

(10.5% hydrochloric acid, 80°C, 144 hrs)

Cor 300 200 100 SS400 SUS304 SUS316L S-TEN™1

In such environment, this steel has a corrosion resistance that is superior to stainless steel.

Mechanical property

	Tensile strength (MPa)	yield strength (MPa)	Elongation (%)
Specification	380mim.	230mim.	35mim.
Example	418	293	41

CR1A

Sulfuric acid dew-point corrosion-resistant steel tubes

In a air preheater, economizer, etc., in the oil-fired boiler using waste gas generated when fuel containing sulfur combusts, sulfuric acid dew-point corrosion at low-temperature may cause corrosion problem. We also manufacture and sell CR1A, which protects corrosion using a Cr-Cu system, together with the S-TEN™1 steel tubes described at left, for these applications.

Standard : METI KA-STBA10 (with seamless tube)

Chemical composition (mass%)

	С	Si	Mn	Р	S	Cu	Cr
CR1A	0.10max.	0.20~0.80	0.80max.	0.025max.	0.015~0.030	0.25~0.35	1.00~1.50

Quality property

Mechanical property

		Dimensions (mm)	Tensile strength (MPa)	yield strength (MPa)	Elongation (%)
CR1A	Specification	—	410min.	255min.	25min.
UNIA	Example	φ63.5×t7.0	473	322	38

Corrosion resistance after service exposure

		Material used									
Condition	Dimensions	Code	Quantity o	f corrosion	Depth of	corrosion					
	(mm)	Code	Average(%)	Average(%) Ratio		Ratio					
Boiler air preheater Fuel: C heavy oil Usage condition:	ø48.6×t3.6	CR1A	1.85	1.00	0.17	1.00					
2,627 hrs External surface : Air Inside tube : Combustion gas	φ40.0^(5.0	Carbon steel	9.32	5.04	1.61	9.48					

For more detailed properties, refer to our catalogue "Sulfuric and Hydrochloric Acid Dew-point Corrosion-resistant Steel S-TEN™ Technical Information."

18

HCM2STM Superior weldability and high-temperature strength 2.25Cr ferritic steel tubes

KA-STB(P)A24J1, ASTM A213 T23/A335 P23, ASME SA213 T23/SA335 P23 Code Case 2199 Developed jointly with Mitsubishi Heavy Industries, Ltd.

- ①High-strength 2.25Cr ferritic steel tubes (tubes and large-diameter thick-wall pipes) **Features**
 - The strength is about 1.8 times higher than that of conventional STB(P)A24.
 - 2Weldability is improved as compared with conventional steels. The thin wall tubes suppresses welding cracks even if post weld heat treatment.

3 Matching welding consumable are available .

Large-diameter thick wall pipes, superheater tubes, and reheater tubes (steam at relatively low temperatures to Application 575°C) for thermal power generation, and heat recovery boilers

Chemical composition (mass%)

Standard	С	Si	Mn	Р	S	Ni	Cr	Мо
KA-STBA24J1	0.04~0.10	0.50max.	0.10~0.60 0.		0.010max.	0.010max. —		0.05~0.30
ASME CC2199	ditto ditto		ditto	ditto ditto		0.4max.	ditto	ditto
Standard	W	V	Nb	Ti	Al	В	Ν	
KA-STBA24J1			0.02~0.08		0.030max.	0.0005	0.030	
10101012401	1.40 1.70	0.20 0.00	0.02 0.00		0.0001107.	~0.0060	0.000	
ASME CC2199	ditto	ditto	ditto	0.010~0.060	ditto	0.0020 ~0.0060	0.010max.	

Comparison of allowable tensile stress

Comparison of conventional steel regarding cost efficiency

Calculated with pressure: 24.1 MPa; steam temperature: 550 °C; and internal diameter: 300 mm

Steel grade	KA-STPA24J1	STPA24
Allowable tensile stress (550°C, MPa)	84	48
Tube size	<i>ф</i> 408×t54	φ504×t102
	0	0
Weight ratio	47	100

Matching welding consumable (mass)												
		С	Si	Mn	Cr	Ni	Mo	W	V	Nb		
	GTAW	0.04	0.50	0.49	2.19	0.49	0.10	1.59	0.24	0.03		
	SMAW	0.06	0.32	0.79	2.24	1.00	0.10	1.56	0.30	0.04		

Hardness distribution of weld joint

Gr92(NF616) from tubes to large-diameter thick wall pipes

KA-STB(P)A29, ASTM A213 T92/A335 P92, ASME SA213 T92/SA335 P92 Code Case 2179

①High-strength 9Cr ferritic steel pipes and tubes (All sizes are available, from thin-wall heating tubes to large-diameter **Features** thick-wall pipes.)

power.

3 Matching welding consumable are available.

High-temperature 9Cr ferrite steel pipes and tubes (casting), main steam pipes, reheat pipes, and heat exchanger tubes Application

Chemical composition (mass%)

С	Cr	Мо	W	Ni	V	Nb	Ν	В
0.07~0.13	8.50~9.50	0.30~0.60	1.50~2.00	≦0.40	0.15~0.25	0.004~0.09	0.030~ 0.070	0.001~ 0.006

•Comparison of 9Cr ferrite steel tube performance

	Standard		KA-STPA29(Gr.92)	KA-STPA28(Gr.91)
Main ch	emical compo	sition	9Cr-0.5Mo-1. 8W•V.Nb B	9Cr-1Mo-V.Nb
Allowat	ole tensile	600℃	76MPa	62MPa
stress (in	terpretation	625°C	55MPa	44MPa
of MET	standard)	650℃	39MPa	29MPa
Room-te	mperature	TSmin	520MPa	590MPa
tensile	property	YSmin	440MPa	410MPa
	dation scale th)℃, 1,000 hrs≯		71µm	69µm
	eight loss of perature crros	sion*	90mg/cm ²	98mg/cm ²
Welding	GTAW,SM	ЛАW	Matching filler	Matching filler
material	SAW	1	Prototype	Matching filler
	PWHT		ASME requirements are provided for.	ASME requirements are provided for.

*Gas: 0.5%SO₂ + 5%O₂ - 15%Co₂ - residual N₂ Synthetic ash: 1.5mol

Creep rupture strength of Gr.92 (NF616)

NIPPON STEEL CORPORATION

Introduction to high-function steel grades

Superior high-temperature strength 9Cr ferritic steel tubes,

- The strength is about 1.3 times higher than that of the conventional Gr91 (ASME T91/P91).
- NF616 steel, with the world's highest strength, as a high-temperature ferrite steel tube, was self-developed.
- ②A product family that satisfies all needs for thermal power generation boilers, the chemical industry, and nuclear

Comparison of cost efficiency

	Constant inside di	ameter of the pipe
	Inside diam	eter 325 mm
	P92	P91
Minimum wall thickness	50mm	73mm
Volume ratio	78	100 (standard)
Cross-section shape	0	
Steam condition	25.0MPa×1130F[610°C]	ssumed

Tube size Allowable stress

Inside diameter 325 mm assumed P92 ASME SC-I CC2170-6 P91 ASME SC-II D

Introduction to high-function steel grades

TP347HFG

High steam oxidation resistance austenitic stainless steel tube based on proprietary grain refining technology

18Cr-12Ni-0.6Nb / Equivalent steel gradesASTM A213 TP347HFG、ASME SA213 TP347HFG

- ①Fine-grained microstructure by Thermo-Mechanical Process, which contribute to superior steam oxidation resistance to conventional coarse grained TP347H.
- 2Weldability is equivalent to TP347H and matching welding consumable is available.
- 3 Good phase stability proven by long term creep-rapture tests and actual uses.
- (I)Global shipments of more than 7 thousand tons, for USC and biomass boilers.

Process of fine grained structure

Chemical composition (mass%)

	С	Si	Mn	Р	S	Cr	Ni	Nb
ASME TP347HFG	0.06~0.10	1.00max.	2.00max.	0.045max.	0.030max.	17.0~19.0	9.0~13.0	8×C~ 1.10

Quality property

Mechanism for improving steam oxidation resistance using innovative grain refining technology

(TP347HFG, SUPER304H)

•Creep rupture strength

SUPER 304HTM High-strength, high steam oxidation-resistance, austenitic stainless steel tubes 18Cr-9Ni-3Cu-Nb-N/ Equivalent steel grades METI KA-SUS304J1HTB, ASTM A213 S30432, ASME SA213 Code Case 2328

①Hightest strength among 18Cr-8Ni austenitic stainless steels utilizing Cu-rich phase.

- ②Fine-grained microstructure by Thermo-Mechanical Process, which contribute to superior steam oxidation resistance to conventional coarse grained TP347H.
- ③Superior weldability to TP347H due to smaller amount of niobium, PWHT is not mandatory, and matching welding consumable is available.

(4) Good phase stability proven by long term creep-rapture tests and actual operation results in USC boilers. ⑤Global shipments of more than 70 thousand tons, mainly for USC boilers.

Chemical composition (mass%)

	С	Si	Mn	Ni	Cr	Cu	Nb	Ν
KA-SUS304J1HTB	0.07~0.13	0.30max.	1.00max.	7.5~10.5	17.0~19.0	2.5~3.5	0.30~0.60	0.05~0.12

Quality property

•Strength and corrosion resistance and the effect of fine precipitation

•Creep rupture strength

NIPPON STEEL CORPORATION

Introduction to high-function steel grades

XA704 High creep strength austenitic stainless steel tubes

18Cr-9Ni-2W-Nb-V-N / Equivalent steel grade KA-SUS347J1TB, ASTM A213 TP347W, ASME SA213 Code Case 2475

①Creep rupture strength is much higher than SUS347HTB due to V, N, and W contens.

- ②Excellent intergranular corrosion resistance due to lower C content
- 3 Good steam oxidation resistance due to fine-grained microstructure.

(4) Enough thermo stability for boiler tube application.

^⑤Better weldability at elevated temperature than TP304H due to good phase stability.

Chemical composition (mass%)

	С	Si	Mn	Ni	Cr	W	V	Nb	N
Standard value	0.05max.	1.00max.	2.00max.	8.00~ 11.00	17.00~ 20.00	1.50~ 2.60	0.20~ 0.50	0.25~ 0.50	0.10~ 0.25

Quality property

•Creep rupture strength

Comparison of allowable tensile stress

(interpretation of the thermal power house technical standard)

Intergranular corrosion resistance: Sulfuric acid and copper sulfate corrosion test

•Weldability: Varestraint test XA704 has more favorable weldability than SUS304.

NF709 High-strength and high corrosion-resistance austenitic stainless steel tubes

22.5Cr-25Ni-1.5Mo-Nb-N/ Equivalent steel grades KA-SUS310J2TB, ASTM A213 TP310MoCbN, ASME SA213 Code Case 2581

①Highest creep rupture strength among austenitic stainless steel. ⁽²⁾Good steam oxidation resistance due to higher Cr. Ni content. ③Better hot corrosion resistance for chloride alkaline than TP310. ④Applicable as superheater and reheater for coal fired boiler and waste to energy boiler.

Chemical composition (mass%)

	С	Si	Mn	Ni	Cr	Мо	Nb	Ti	В	Ν
Standard value	0.10max.	1.00max.	1.50max.	22.00~ 28.00	19.00~ 23.00	1.00~ 2.00	0.10~ 0.40	0.20max.	0.002~ 0.010	0.10~ 0.25

Quality property

•Creep rupture strength of NF709 base material

•Steam oxidation test (500h)

NIPPON STEEL CORPORATION

Introduction to high-function steel grades

1000 Alloy625filler Matching filler (MPa) 650°C SS 100 750°C St 800°C ∙850°C Average strength of NF709 base material 10 10 10² 10³ 10⁴ 10

•Creep rupture strength of TIG weld joint

Introduction to high-function steel grades

25Cr high corrosion-resistance austenitic stainless steel tubes

25Cr-20Ni-Nb-N/Equivalent steel grades KA-SUS310J1TB, ASTMA213 TP310HCbN, ASME SA213 TP310HCbN

①Much higher strength than conventional 310 stainless steels utilizing finely dispersed M₂₃C₆ and NbCrN. ⁽²⁾Much better steam oxidation resistance than 18Cr-8Ni austenitic stainless steels due to 25Cr-20Ni chemical composition. 3Weldability is equivalent to TP347H, and matching welding consumable is available. ④Global shipments of more than 20 thousand tons for USC, Biomass, and Waste to energy boilers.

Chemical composition (mass%)

	С	Si	Mn	Cr	Ni	Nb	Ν
SME 10HCbN	0.04~ 0.10	1.50max.	2.00max.	24.0~ 26.0	19.0~ 22.0	0.20~ 0.60	0.15~ 0.35

•Creep rupture strength and effect of fine precipitation

Steam oxidation property

•Fine precipitation of extraction replica

•High-temperature corrosion property

YUSTM170 High-strength and pitting-resistant austenitic stainless steel tubes

25Cr-13Ni-0.8Mo-0.3N / Equivalent steel grades: KA-SUS309J1TB / Stainless steel plate: JIS G 4304·G 4305 SUS317J2

- ①These exhibit pitting resistance and clearance corrosion resistance superior to SUS316 and SUS317L. Features ture than Type316 and Type317L.
 - about 1.5 times higher than that of normal austenitic stainless steel.

Application Seawater resistance tubes and superheater tubes of black liquor recovery boilers and refuse incineration boilers

Chemical composition (mass%)

	С	Si	Mn	Р	S	Ni	Cr	Мо	Ν
Standard value	0.06max.	1.50max.	2.00max.	0.040max.	0.030max.	12.00~ 16.00	23.00~ 26.00	0.50~ 1.20	0.25~ 0.40

Quality property

Mechanical property

	Tensile strength (MPa)	Yield (MPa)	Elongation (%)
Standard value	690min.	345min.	40min.

•High-temperature tensile strength and yield

NIPPON STEEL CORPORATION

Introduction to high-function steel grades

(2) They show superior sulfuric and hydrochloric acid resistance and can be used at higher concentration and tempera-

③They feature austenitic composition and superior workability and weldability. The strength at room temperature is

Introduction to high-function steel grades

MN25R High corrosion-resistance stainless steel tubes for soda recovery boilers

25Cr-14Ni-0.8Mo-0.3N-LC-Low Si/

Equivalent steel grades: KA-SUS309J3LTB, ASTM A213 TP309LMoN, ASME SA213 Code Case 2639

The MN25R steel tube is a high corrosion-resistance steel tube for the superheater tubes of black liquor recovery **Features** boilers.

Superheater tubes and reheater tubes of black liquor recovery boilers Application

Chemical composition (mass%)

	С	Si	Mn	Р	S	Ni	Cr	Мо	N
Standard value	0.025max.	0.70max.	2.00max.	0.040max.	0.030max.	13.00~ 16.00	23.00~ 26.00	0.50~ 1.20	0.25~ 0.40

Quality property

•Allowable tensile stress

•High-temperature Corrosion resistance

____ 20µm

High-strength and high corrosion-resistance Ni-based alloy tubes and pipes for next-generation HR6W 700°C steam A-USC boilers

23Cr-45Ni-7W-Ti-Nb / Equivalent steel grades ASTM B167-UNS N06674, ASME SB167 Code Case 2684

①Stability of long term creep strength and superior creep rupture ductility. 2 Much better corrosion resistance than 18Cr-8Ni austenitic stainless steels. ③Microstructural phase stability at elevated temperature, which contributes to superior stress relaxation properties and enough fatigue properties for various applications.

(4)Better formability, welder available size range, and better weldability than γ' phase present Ni based alloys.

Chemical composition (mass%)

	С	Si	Mn	Cr	Fe	W	Ti	Nb	В	Ν	Remnant
ASME CC 2684	0.1max.	1.0max.	1.50max.	21.5~ 24.5	20.0~ 27.0	6.0~ 8.0	0.05~ 0.20	0.10~ 0.35	0.005~ 0.006	0.02max.	Ni

Creep rupture strength

•Creep fatigue property

NIPPON STEEL CORPORATION

Introduction to high-function steel grades

•HR6W large-diameter, thick-wall tubes

High-temperature corrosion property

Available Size Range (Example)

Hot-finished seamless tubes and pipes

Non dian	ninal neter	Outside diameter										Wall	Thick	ness	(mm)										Outside diameter
(A)	(B)	(mm)	2.8	3	3.5	4	5	6	7	8	9	10	11	12	13	14	15	17	20	25	30	35	40	45	(mm)
25	1	34.0																							34.0
		38.1																							38.1
40	1 ¹ / ₂	48.6																							48.6
50	2	60.5																							60.5
65	2 ¹ / ₂	76.3																							76.3
		82.6																							82.6
80	3	89.1																							89.1
90	3 ¹ / ₂	101.6																							101.6
100	4	114.3																							114.3
		(120.0)																							(120.0)
		130.0																							130.0
125	5	139.8																							139.8
		(150.0)																							(150.0)
150	6	165.2																							165.2
		(170.0)																							(170.0)
	7	190.7																							190.7
200	8	216.3																							216.3
250	10	267.4																							267.4
300	12	318.5																							318.5
350	14	355.6																							355.6
400	16	406.4																							406.4
(A)	(B)	(mm)	2.8	3	3.5	4	5	6	7	8	9	10	11	12	13	14	15	17	20	25	30	35	40	45	(mm)
Non dian		Outside diameter										Wall	Thick	ness	(mm)										Outside diameter

	Seamless	forged	l pipe	(hot	finished)	
--	----------	--------	--------	------	-----------	--

No dia	minal meter	Outside diameter									Wall	Thick	ness	(mm))								Outside diamete
(A)	(B)	(mm)	20	24	30	35	40	45	50	55	60	70	80	90	100	120	140	160	180	200	220	240	(mm)
		152.4																					152.4
150	6	165.2																					165.2
	7	190.7																					190.
200	8	216.3																					216.3
250	10	267.4																					267.4
300	12	318.5																					318.
350	14	355.6																					355.
400	16	406.4																					406.4
450	18	457.2																					457.2
500	20	508.0																					508.
550	22	558.8																					558.
600	24	609.6																					609.
650	26	660.4																					660.
700	28	711.2																					711.2
750	30	762.0																					762.
800	32	812.8																					812.
850	34	863.6																					863.
900	36	914.4																					914.
1000	40	1016.0																					1016.
1100	44	1117.6																					1117.0
1200	48	1219.2																					1219.
1300	50	1270.0																					1270.
(A)	(B)	(mm)	20	24	30	35	40	45	50	55	60	70	80	90	100	120	140	160	180	200	220	240	(mm)
Nominal Outside diameter Wall Thickness (mm)									Outsid diamet														

Remarks 1. Be aware that there is a range where manufacturing can be difficult, depending on the material properties.
2. Consult with us about ultra-thin items near the manufacturable limit beforehand.
3. Consultation regarding size for anything not in this table is also available.

Remark Consultation regarding size for anything not in this table is also available.

Available Size Range (Example)

Cold-finished seamless tubes and pipes

	ninal neter	Outside diameter										Wa	all Th	ickne	ess (n	nm)										Outside diameter
(A)	(B)	(mm)	1.2	1.6	2	2.6	3.2	4	4.5	5	6	7	8	9	10	11	12	13	14	15	17	20	25	30	35	(mm)
		6.0																								6.0
		8.0																								8.0
6	¹ / ₈	10.5																								10.5
10	³ / ₈	17.3																								17.3
15	¹ / ₂	21.7																								21.7
20	³ / ₄	27.2																								27.2
25	1	34.0																								34.0
		38.1																								38.1
32	1 ¹ / ₄	42.7																								42.7
40	1 ¹ / ₂	48.6																								48.6
50	2	60.5																								60.5
65	2 ¹ / ₂	76.3																								76.3
		82.6																								82.6
80	3	89.1																								89.1
90	3 ¹ / ₂	101.6																								101.6
100	4	114.3																								114.3
		120.0																								120.0
		130.0																								130.0
125	5	139.8																								139.8
		150.0																								150.0
150	6	165.2																								165.2
		170.0																								170.0
	7	190.7																								190.7
200	8	216.3																								216.3
250	10	267.4																								267.4
300	12	318.5																								318.5
350	14	355.6																								355.6
400	16	406.4																								406.4
(A)	(B)	(mm)	1.2	1.6	2	2.6	3.2	4	4.5	5	6	7	8	9	10	11	12	13	14	15	17	20	25	30	35	(mm)
Nor dian	ninal neter	Outside diameter										Wa	all Th	lickne	ess (r	nm)										Outside diameter

Remarks Consultation regarding size for anything not in this table is also available.

Example of Packing

Example of Indication

memo

Requests during orders

When ordering and inquiring about our tubes and pipes, you are requested to inform us about the following items.

1. Steel tube standard and type

6. Packing type

- 2. Dimensions (outside diameter, thickness, and length)
- 3. Quantity
- 4. Delivery date and destination
- 5. Applications and usage condition

- 7. Number of copies of the inspection certificate
- 8. With or without a witnessed inspection
- 9. Other and specially requested items

memo