Since 1901, NIPPON STEEL has been manufacturing rails of every description for more than 110 years, using cutting edge equipment and accumulated technology. NIPPON STEEL rails are highly rated at home and abroad. Not only that they meet most of the domestic demand, but also exported in large quantities to many countries around the globe. NIPPON STEEL rails are available in various sizes and materials, so that they can be used for diverse applications, such as ordinary passenger railways, high speed railways, and heavy haul railways.

In addition to standard rails, NIPPON STEEL manufactures various rails such as Head hardened rail, rail for Heavy haul, Tongue rail, and crane rails.

As one of the world’s leading rail maker with superior quality, NIPPON STEEL are greatly contributing to Economical and Green railway transportations all over the world.
Features

1. Production by the Universal Rolling Process, with newest technology
 - Rail head with superior forging effect.
 - Highly symmetrical cross sections.
 - Smooth surface without defect

2. World top class technology and facility for producing uniform rails; Steel making, Rolling, Straightening
 - Highly uniform steel by continuous casting method.
 - Superior quality with high purity.
 - Uniform dimensions and shape for all length of the rail

3. Inspection by in-line automatic testing machines
 - Non-destructive testing by Ultra-Sonic Testers
 - Surface defect testing by Eddy Current testers
 - Automatic dimension measurement by Laser

4. Research and Development organized advancing toward easy to use, superior quality rails.
 - Integrated Research and Development organization, with basic theory to product characteristics, welding technology and evaluation of rail performance

5. Setting Up the system to manufacture and ship the world longest as rolled rails for railroads — 150-meter (480ft) long rails —
 - Worlds longest Ex-mill, not welded, long rails for railways
 - Reducing rail maintenance of railway companies by reducing the number of weld
 - Serve to help stabilize the rail
Manufacturing Process

1. Blast furnace
2. Pig iron
3. Charging molten iron
4. Basic-oxygen furnace
5. Secondary refining
6. Continuous casting
7. Bloom
8. Reheating furnace
9. B.D Mill
10. V1 Mill
11. V2 Mill
12. E1 Mill
13. E2 Mill
14. V3 Mill
15. F Mill
16. Hot saw
17. Hot Stamper
18. Slack Quench Equipment
19. Roller Straightener
20. Cooling
21. Sawing & Drilling line
22. Chamfering
24. 50M 150M rail shipment
25. Assortment

Manufacturing Process
Standard Rails

NIPPON STEEL has varieties of standard rails.
Specifications of NIPPON STEEL Rails

Chemical Composition and Mechanical Properties

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Chemical Composition</th>
<th>Mechanical Properties</th>
<th>Falling Weight Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Classification</td>
<td>C</td>
<td>Si</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Standard Strength</td>
<td>0.74–0.86</td>
<td>0.10–0.60</td>
</tr>
<tr>
<td></td>
<td>Intermediate strength</td>
<td>0.72–0.82</td>
<td>0.10–1.50</td>
</tr>
<tr>
<td></td>
<td>High strength</td>
<td>0.74–0.86</td>
<td>0.10–0.75</td>
</tr>
<tr>
<td>EN13674–2011</td>
<td>R260</td>
<td>0.82–0.80</td>
<td>0.15–0.58</td>
</tr>
<tr>
<td></td>
<td>R300HT</td>
<td>0.72–0.80</td>
<td>0.15–0.58</td>
</tr>
<tr>
<td>IRS T12–2009</td>
<td>GR1080</td>
<td>0.80–0.80</td>
<td>0.10–0.50</td>
</tr>
<tr>
<td></td>
<td>UIC860–R</td>
<td>0.60–0.80</td>
<td>0.10–0.50</td>
</tr>
<tr>
<td></td>
<td>JIS E1101–2001</td>
<td>37A</td>
<td>0.55–0.70</td>
</tr>
<tr>
<td></td>
<td>40N</td>
<td>0.63–0.75</td>
<td>0.15–0.30</td>
</tr>
<tr>
<td></td>
<td>50N</td>
<td>0.72–0.82</td>
<td>0.10–0.55</td>
</tr>
<tr>
<td></td>
<td>JIS E1120–2007</td>
<td>37A</td>
<td>0.55–0.70</td>
</tr>
<tr>
<td></td>
<td>40N</td>
<td>0.63–0.75</td>
<td>0.15–0.30</td>
</tr>
<tr>
<td></td>
<td>50N</td>
<td>0.72–0.82</td>
<td>0.10–0.55</td>
</tr>
</tbody>
</table>

Dimensions and Weights

The dimensions and weights of rails being manufactured at NIPPON STEEL are tabulated below. Manufacture of sections other than those tabulated below will be considered depending on your quantities ordered. The standard length for rails is 25m under JIS, but longer or shorter length can be delivered if required. 150m rail is also available.

Dimensions

- **EN**
 - 54kg
 - 60kg
 - 65kg
 - 115bs
 - 132lbs
 - 136lbs
 - 160lbs
 - 180lbs
 - 225lbs
 - 300lbs
 - 375lbs
 - 425lbs
 - 500lbs

- **UC**
 - 54kg
 - 60kg
 - 65kg
 - 115bs
 - 132lbs
 - 136lbs
 - 160lbs
 - 180lbs
 - 225lbs
 - 300lbs
 - 375lbs
 - 425lbs
 - 500lbs

- **ARAMEA**
 - 54kg
 - 60kg
 - 65kg
 - 115bs
 - 132lbs
 - 136lbs
 - 160lbs
 - 180lbs
 - 225lbs
 - 300lbs
 - 375lbs
 - 425lbs
 - 500lbs

- **AS**
 - 60kg
 - 545
 - 645
 - 845
 - 1045

- **HR**
 - 45kg
 - 545
 - 645
 - 845
 - 1045

- **JIS**
 - 375lbs
 - 400lbs
 - 500lbs

Notes

- (1) denotes values not stipulated in specifications but calculated by NIPPON STEEL.
Head Hardened Rail
(DHH Rails)

Recently, railroad companies desire to improve their rail life. Therefore, rails of various hardness and much deeper hardened layer are required depending on the conditions under which the tracks will be used. NIPPON STEEL has developed DHH (Deep Head Hardened) rails in order to satisfy these demands.

Features of DHH rails

1) Good wear resistance
DHH rails enjoy long rail life coming from higher hardness produced by In-Line heat treatment process. This leads to high economical performance by reducing maintenance cost and purchasing cost.

2) Deep and Uniformly hardened layer in rail head
DHH rails show a fine pearlitic structure over the whole rail head. Consequently, DHH rails retain high hardness and strength deep into the rail head.

3) High weldability
DHH rails permit flash-butt welding under the same condition as plain carbon rails. Also, the softened area of HAZ (Heat affected zone) is very narrow.

Kinds of DHH rails
We produce following grades of DHH rails

- JIS E 1120 : HH340 HH370
- EN 13674 : R350HT
- IST12 : GR1080
Specifications

JIS E 1120 (for reference)

1 Chemical Composition (%)

<table>
<thead>
<tr>
<th>Type</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHH340</td>
<td>0.72–0.82</td>
<td>0.10–0.55</td>
<td>0.70–1.10</td>
<td>0.030 and under</td>
<td>0.020 and under</td>
<td>0.20 and under</td>
<td>0.03 and under*</td>
</tr>
<tr>
<td>DHH370</td>
<td>0.72–0.82</td>
<td>0.10–0.65</td>
<td>0.80–1.20</td>
<td>0.030 and under</td>
<td>0.020 and under</td>
<td>0.25 and under</td>
<td>0.03 and under*</td>
</tr>
</tbody>
</table>

* Vanadium are added if needed

2 Mechanical Properties

<table>
<thead>
<tr>
<th>Type</th>
<th>Tensile Strength N/mm² (kgf/mm²)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHH340</td>
<td>1,080 (110) and over</td>
<td>8 and over</td>
</tr>
<tr>
<td>DHH370</td>
<td>1,130 (115) and over</td>
<td>8 and over</td>
</tr>
</tbody>
</table>

3 Hardness

<table>
<thead>
<tr>
<th>Type</th>
<th>Surface hardness at head</th>
<th>Vickers hardness (HV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHH340</td>
<td>321 – 375</td>
<td>311 and over</td>
</tr>
<tr>
<td>DHH370</td>
<td>331 – 388</td>
<td>331 and over</td>
</tr>
</tbody>
</table>

4 Quality

1 Chemical Composition (%) and Electric Resistance (for reference)

<table>
<thead>
<tr>
<th>Type</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>E 1120</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHH340</td>
<td>0.78</td>
<td>0.24</td>
<td>0.87</td>
<td>0.012</td>
<td>0.011</td>
<td>0.13</td>
<td>22.80</td>
</tr>
<tr>
<td>DHH370</td>
<td>0.77</td>
<td>0.23</td>
<td>0.88</td>
<td>0.013</td>
<td>0.008</td>
<td>0.20</td>
<td>23.44</td>
</tr>
<tr>
<td>NHH</td>
<td>0.78</td>
<td>0.23</td>
<td>0.86</td>
<td>0.023</td>
<td>0.009</td>
<td>0.04</td>
<td>22.73</td>
</tr>
<tr>
<td>NHH</td>
<td>0.71</td>
<td>0.23</td>
<td>0.91</td>
<td>0.015</td>
<td>0.006</td>
<td>0.04</td>
<td>22.01</td>
</tr>
</tbody>
</table>

5 Tensile properties (for reference)

<table>
<thead>
<tr>
<th>Type</th>
<th>Tensile Strength N/mm² (kgf/mm²)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHH340</td>
<td>1,164 (118.7)</td>
<td>14</td>
</tr>
<tr>
<td>DHH370</td>
<td>1,291 (131.7)</td>
<td>13</td>
</tr>
</tbody>
</table>

Brinell Hardness in rail section (for reference)

Compared with conventional heat treated rails, the DHH rail has more uniform hardness over the entire rail head section.
Macro and Micro structure of DHH rail (for reference)

Macro structure

DHH rail

conventional HH rail

Micro structure

×5,000

Residual Stress

The HH rail shows stable residual stress distribution over the entire cross-section.

Hardness distribution of top rail head and vertical cross section

DHH cooling (as rolled)

conventional HH cooling (as rolled)

Distance from the center of the weld (mm)

Hardness HV10

Cooling (as rolled)
(ii) Thermite Welding
Thermite welding is also available for DHH340 & DHH370.

DHH370 rail
Macro structure of welded joint (JIS 50N rail)

DHH340 rail
Macro structure of welded joint (JIS 50N rail)

Hardness distribution of welded joint (DHH370/TW)
(with post-heat treatment)

Hardness distribution of welded joint (DHH340/TW)
(with post-heat treatment)

Rail for Heavy Haul (HE Rail™)
Recently, operating environment of track material, especially rail, are getting harsher and harsher, due to the increasing axle load.

Under this circumstance, production for the higher wear resistance and higher economical performance rail are demanded.

Therefore, in order to respond to such demand, We NIPPON STEEL have developed HE rail™ which has higher wear resistance and higher anti-surface defect performance than conventional HH rails.

Comparison of DHH rail and HE rail™

Rail for Heavy haul

- **DHH rail**
 - 0.8% carbon

- **HE rail**
 - 0.9% and higher carbon

Relation between hardness, wear and carbon content (Reference)

![Graph showing the relationship between hardness, wear, and carbon content](image)

- **DHH (0.8%C)**
- **HE (0.9%C)**
- **HE (1.0%C)**

Contact pressure: 640MPa

Slip factor: 20%

Quality

Characteristic of DHH rail and HE rail are shown below

Chemical composition (Reference)

<table>
<thead>
<tr>
<th>Rails</th>
<th>Type</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHH4070</td>
<td>eutectoid</td>
<td>0.8</td>
<td>0.3</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>DHH4070S</td>
<td>eutectoid</td>
<td>0.8</td>
<td>0.3</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>HE370</td>
<td>Hyper</td>
<td>0.9</td>
<td>0.3</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>HE400</td>
<td>Hyper</td>
<td>0.9</td>
<td>0.3</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>HE-X</td>
<td>Hyper</td>
<td>1.0</td>
<td>0.5</td>
<td>0.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Tensile test result (Reference)

<table>
<thead>
<tr>
<th>Rails</th>
<th>Type</th>
<th>Yield Strength (MPa)</th>
<th>Tensile Strength (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHH</td>
<td>eutectoid</td>
<td>880</td>
<td>1290</td>
<td>14</td>
</tr>
<tr>
<td>HE370</td>
<td>Hyper</td>
<td>950</td>
<td>1350</td>
<td>12</td>
</tr>
<tr>
<td>HE400</td>
<td>Hyper</td>
<td>950</td>
<td>1350</td>
<td>12</td>
</tr>
<tr>
<td>HE-X</td>
<td>Hyper</td>
<td>950</td>
<td>1438</td>
<td>11</td>
</tr>
</tbody>
</table>

Welding test result (Reference)

(ⅰ) Fulsh-butt welding

HE370 rail

- 0.9%C (HE rail) (395HV)
- 0.8%C (HH rail) (385HV)

Rail life comparison test in the actual track (Reference)

- **HH rail**
- **HE rail**

Rail life improvement: 38%

- 12.7mm (1/2 inch)

Comparison of surface condition

- **HE rail**
- **DHH rail**
Special Rails
(Tongue Rails/Crane Rails)

Tongue Rails

Specification

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard</th>
<th>Chemical composition (%)</th>
<th>Mechanical Properties</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>Si</td>
<td>Mn</td>
</tr>
<tr>
<td>80S</td>
<td>JIS</td>
<td>0.63</td>
<td>0.15</td>
<td>0.70</td>
</tr>
<tr>
<td>70S</td>
<td>(JIS E 1101)</td>
<td>0.63</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>50S</td>
<td>(JIS E 1101)</td>
<td>0.15</td>
<td>0.70</td>
<td>—</td>
</tr>
</tbody>
</table>

- Falling weight test required, drop height 10m
- Falling weight test required, drop height 6.1m

Characteristic and Usage

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Typical standard</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most suitable for machining into various tongue rails</td>
<td>JIS</td>
<td>Points and crossings</td>
</tr>
</tbody>
</table>

Dimensions and Weights

For Center of Gravity, c is distance from bottom, e is distance from the top of the head

*1) under 14.3mm from the top of rail head surface
Crane Rails

Specification

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard</th>
<th>Chemical composition (%)</th>
<th>Mechanical Properties</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>Si</td>
<td>Mn</td>
</tr>
<tr>
<td>CR100K</td>
<td>NIPPON STEEL Standard</td>
<td>0.60</td>
<td>0.10</td>
<td>0.70</td>
</tr>
<tr>
<td>CR73K</td>
<td>Standard</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

All tensile test uses JIS No4 test piece

Characteristic and Usage

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Typical standard</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can bear a huge load weight with its stable shape.</td>
<td>NIPPON STEEL Standard</td>
<td>Cranes</td>
</tr>
</tbody>
</table>

Dimensions and Weights

<table>
<thead>
<tr>
<th>Type</th>
<th>Dimensions (mm)</th>
<th>Sectional Area (cm²)</th>
<th>Weight (kg/m)</th>
<th>Center of Gravity (cm)</th>
<th>Moment of Inertia (cm⁴)</th>
<th>Radius of Gyration (cm)</th>
<th>Section Modulus Z (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR100K</td>
<td>150.0 150.0</td>
<td>120.0 53.0 65.0 39.0</td>
<td>127.68</td>
<td>100.2</td>
<td>7(5.7)</td>
<td>6(4.3)</td>
<td>3(2.70)</td>
</tr>
<tr>
<td>CR73K</td>
<td>135.0 140.0</td>
<td>120.0 43.0 65.0 32.0</td>
<td>93.38</td>
<td>73.3</td>
<td>6(6.6)</td>
<td>6(6.6)</td>
<td>2(2.00)</td>
</tr>
</tbody>
</table>

For Center of Gravity, c is distance from bottom, e is distance from the top of the head
() denotes values not stipulated in specifications but calculated by NIPPON STEEL

Section

- **CR 100K**
- **CR 73K**
Marking (JIS E 11001) *(JIS Standard are shown for reference, please consult us anytime for original marking.)*

Standard Rail

- **Branding**
 - 60
 - 50N, 40N
 - HH Rail
 - 60
 - 50N

- **Stamping**
 - 60 LD 2003 5
 - 50N LD 2003 5
 - HH340, HH370

- **Trade Mark**
 - HH Rail
 - HH340, HH370

- **Year of manufacture**
 - 2003

- **Month of manufacture or its abbreviation**

- **Serial number of rail**

- **Number of strand/Mark to indicate order of pouring melt into mould**

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Tongue Rails

- **Branding**
 - 80S
 - 70S
 - 50S

- **Stamping**
 - 80S LD 2003 5
 - 70S LD 2003 5
 - 50S LD 2003 5

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Crane Rails

- **Branding**
 - CR 100K
 - CR 73K

- **Stamping**
 - CR 100K
 - CR 73K

- **Heat number**

Production record will be shown on the rails.

Markings (JIS E 11001) *(JIS Standard are shown for reference, please consult us anytime for original marking.)*

Standard Rail

- **Branding**
 - 60
 - 50N, 40N
 - HH Rail
 - 60
 - 50N

- **Stamping**
 - 60 LD 2003 5
 - 50N LD 2003 5
 - HH340, HH370

- **Trade Mark**
 - HH Rail
 - HH340, HH370

- **Year of manufacture**
 - 2003

- **Month of manufacture or its abbreviation**

- **Serial number of rail**

- **Number of strand/Mark to indicate order of pouring melt into mould**

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Tongue Rails

- **Branding**
 - 80S
 - 70S
 - 50S

- **Stamping**
 - 80S LD 2003 5
 - 70S LD 2003 5
 - 50S LD 2003 5

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Crane Rails

- **Branding**
 - CR 100K
 - CR 73K

- **Stamping**
 - CR 100K
 - CR 73K

- **Heat number**

Production record will be shown on the rails.

Markings (JIS E 11001) *(JIS Standard are shown for reference, please consult us anytime for original marking.)*

Standard Rail

- **Branding**
 - 60
 - 50N, 40N
 - HH Rail
 - 60
 - 50N

- **Stamping**
 - 60 LD 2003 5
 - 50N LD 2003 5
 - HH340, HH370

- **Trade Mark**
 - HH Rail
 - HH340, HH370

- **Year of manufacture**
 - 2003

- **Month of manufacture or its abbreviation**

- **Serial number of rail**

- **Number of strand/Mark to indicate order of pouring melt into mould**

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Tongue Rails

- **Branding**
 - 80S
 - 70S
 - 50S

- **Stamping**
 - 80S LD 2003 5
 - 70S LD 2003 5
 - 50S LD 2003 5

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Crane Rails

- **Branding**
 - CR 100K
 - CR 73K

- **Stamping**
 - CR 100K
 - CR 73K

- **Heat number**

Production record will be shown on the rails.

Markings (JIS E 11001) *(JIS Standard are shown for reference, please consult us anytime for original marking.)*

Standard Rail

- **Branding**
 - 60
 - 50N, 40N
 - HH Rail
 - 60
 - 50N

- **Stamping**
 - 60 LD 2003 5
 - 50N LD 2003 5
 - HH340, HH370

- **Trade Mark**
 - HH Rail
 - HH340, HH370

- **Year of manufacture**
 - 2003

- **Month of manufacture or its abbreviation**

- **Serial number of rail**

- **Number of strand/Mark to indicate order of pouring melt into mould**

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Tongue Rails

- **Branding**
 - 80S
 - 70S
 - 50S

- **Stamping**
 - 80S LD 2003 5
 - 70S LD 2003 5
 - 50S LD 2003 5

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Crane Rails

- **Branding**
 - CR 100K
 - CR 73K

- **Stamping**
 - CR 100K
 - CR 73K

- **Heat number**

Production record will be shown on the rails.

Markings (JIS E 11001) *(JIS Standard are shown for reference, please consult us anytime for original marking.)*

Standard Rail

- **Branding**
 - 60
 - 50N, 40N
 - HH Rail
 - 60
 - 50N

- **Stamping**
 - 60 LD 2003 5
 - 50N LD 2003 5
 - HH340, HH370

- **Trade Mark**
 - HH Rail
 - HH340, HH370

- **Year of manufacture**
 - 2003

- **Month of manufacture or its abbreviation**

- **Serial number of rail**

- **Number of strand/Mark to indicate order of pouring melt into mould**

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Tongue Rails

- **Branding**
 - 80S
 - 70S
 - 50S

- **Stamping**
 - 80S LD 2003 5
 - 70S LD 2003 5
 - 50S LD 2003 5

- **Heat number**

- **Work gang identification**

- **Carbon content**

- **Manganese content**

Crane Rails

- **Branding**
 - CR 100K
 - CR 73K

- **Stamping**
 - CR 100K
 - CR 73K

- **Heat number**

Production record will be shown on the rails.
Research on Rails

At NIPPON STEEL, world-class research and development personnel provided with sophisticated laboratory facilities constantly make strenuous R & D efforts to offer better rails and new application technology, including new welding techniques. To meet the demand of faster high speed trains and heavier heavy haul railway.

Machines for rail performance testing.

- High speed rail tester (*)
- Rail wear and damage producing tester (*)
- Heat treatment tester
- Type Nishihara wear tester
- Rail damage simulator (*)
- Rail bend and fatigue tester
- Flash-butt welder
- Rail bend tester
- Falling weight tester

(*) NIPPON STEEL original machines