

www.nipponsteel.com

Notice:While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication. The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

NIPPON STEEL CORPORATION

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: 03-6867-4111 www.nipponsteel.com

Solution for Offshore Oil and Gas NIPPON STEEL E202en_02_202004f © 2019, 2020 NIPPON STEEL CORPORATION

Solution for

Offshore Oil and Gas

NIPPON STEEL Group has various supply records of developing and supplying high-performance / high quality materials for offshore oil and gas development.

NIPPON STEEL group provides solutions based on the reliability and know-how that precisely matches the needs of the market.

Furthermore, we look to further contribute by leveraging the highest technological development capabilities in the world.

NIPPON STEEL

Steelmaking

Engineering
(NIPPON STEEL ENGINEERING CO., LTD.)

Welding

(NIPPON STEEL WELDING & ENGINEERING CO.,LTD.)

Chemicals

(NIPPON STEEL Chemical & Material Co., Ltd.)

New Materials

(NIPPON STEEL Chemical & Material Co., Ltd.)

System Solutions

(NS Solutions Corporation)

PLATE UNIT

FLAT PRODUCTS UNIT

BAR & WIRE ROD UNIT

RAILWAY, AUTOMOTIVE & MACHINERY PARTS UNIT

CONSTRUCTION PRODUCTS UNIT

TITANIUM & SPECIALTY STAINLESS STEEL UNIT

PIPE & TUBE UNIT

SEAMLESS ERW U0

STAINLESS STEEL UNIT

Technical Research & Development Bureau

Research & Engineering Center (Futtsu) | Amagasaki R&D Center | Hasaki R&D Center

Promote technology development -key driver for innovation

Develop high-performing products and solutions that meet customer's changing needs

Contribution for sustainability
CO2 emission reduction, recycling

Oil well pipe with high corrosion resistance

Electric Vehicles

Hydrogen community

Process innovation

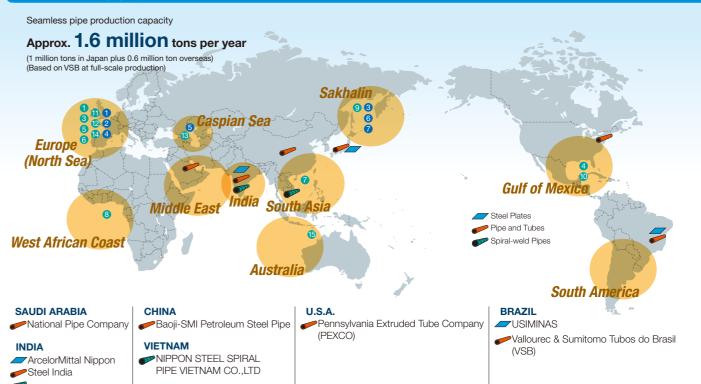
Low quality raw materials Maximize use of scraps

ICT and Al

eduling ____ Sensing automation

Derwent Top 100 Global Innovator 2020

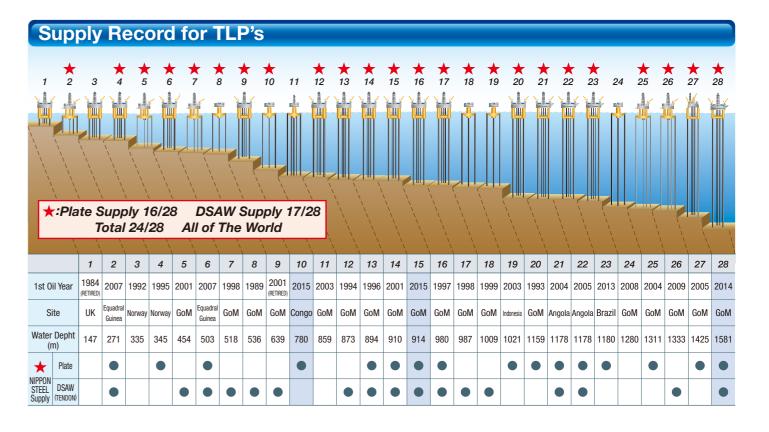
Clarivate
Analytics

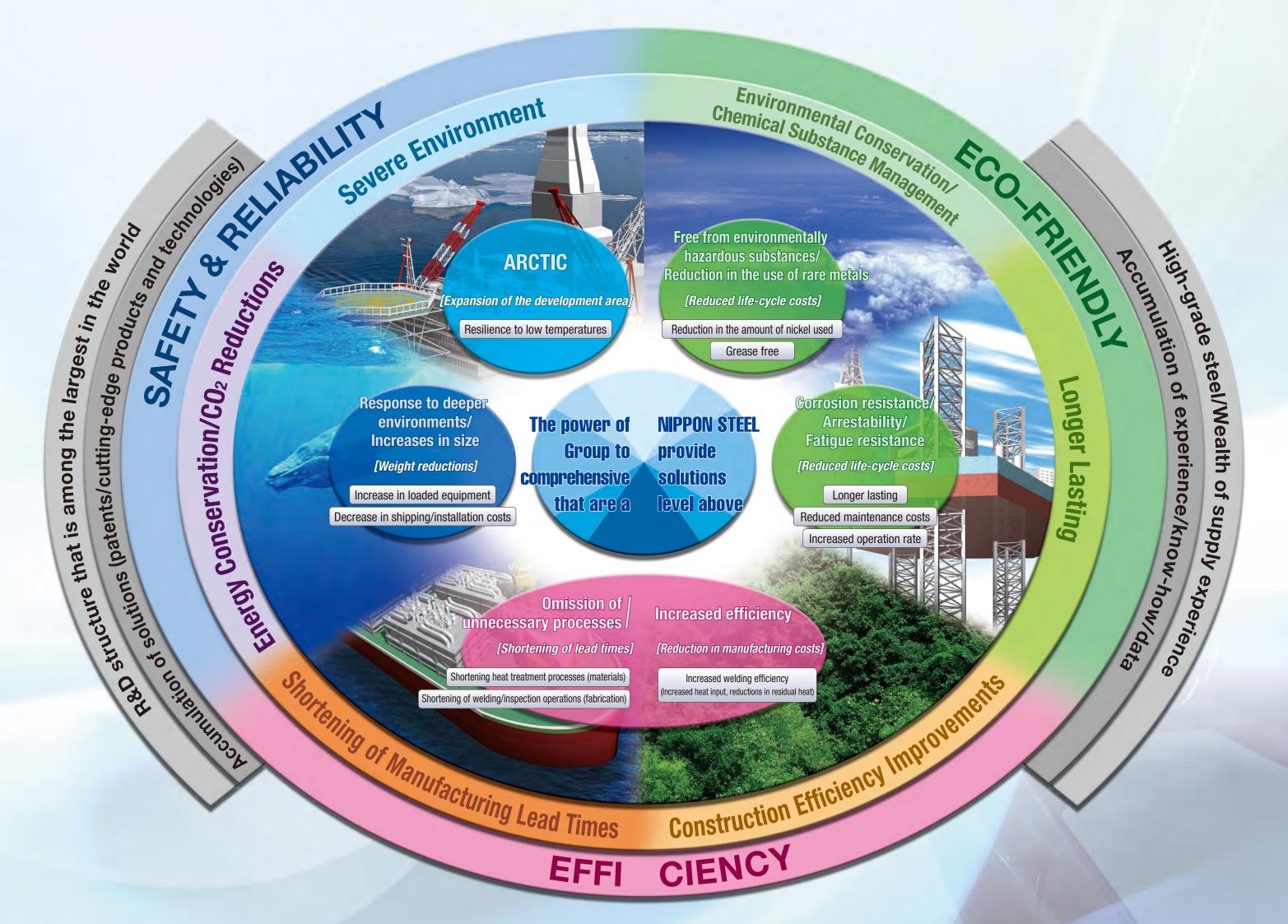

About 800 steel researchers

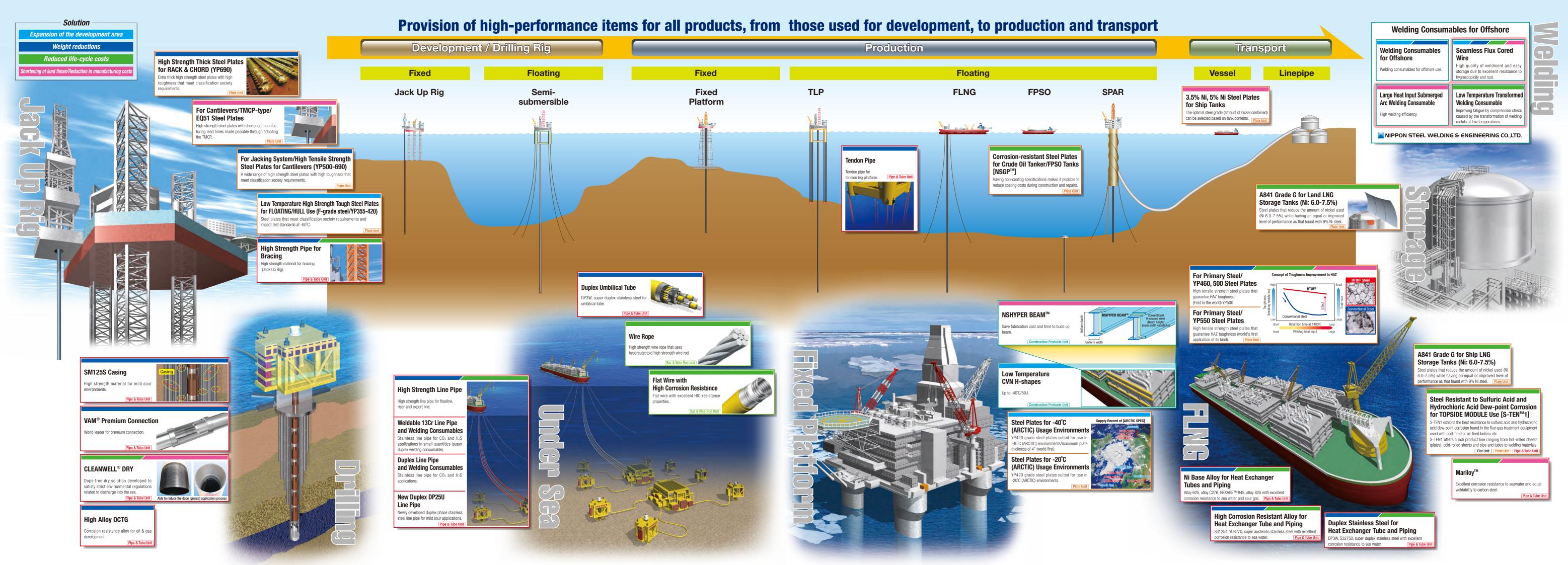
R&D spending ¥220bn/3years (+¥10bn/3years vs. 2017 Plan)

NIPPON STEEL was Awarded [Derwent Top 100 Global Innovator 2019-20] -Selected for the Top 100

Global Supply Network (Steel Plates, Pipe and Tubes, Spiral-weld Pipes)




NIPPON STEEL's huge experience of supplying highend materials for world offshore projects will be able to make solutions.


High End Plate Supply Record for Offshore Structure

Hi	High-Strength : YP460, 500, 550								
No.	Year	Area	MAX / YP	Type	No.	Year	Area	MAX / YP	Туре
0	2014	North Sea	YP500	Fixed	9	2003	Russia	YP460	GBS
2	2014	-	YP460	Vessel	10	2003	Gulf of Mexico	YP500	Semi-sub
8	2013	North Sea	YP460	SPAR	•	2002	Mediterranean Sea	YP460	Fixed
4	2012	Gulf of Mexico	YP550	TLP	12	2001	North Sea	YP500	Fixed
6	2011	North Sea	YP500	Fixed	13	2001	Caspian Sea	YP460	Fixed
6	2006	North Sea	YP500	Drill Ship	14	2000	North Sea	YP500	Fixed
7	2005	Asia	YP460	Fixed	15	2000	Timor Sea	YP460	Fixed
8	2003	West Africa	YP460	FPSO					

ARCTIC : Low-Temperature HAZ-Toughness									
No. Year Area MAX / YP Design Temp. Type									
0	2012	North Sea	YP355	-20°C	FPSO				
2	2012	North Sea	YP420	-20°C	Fixed				
3	2011	Russia	YP355	-40°C	GBS				
4	2011	North Sea	YP355	-20°C	FPSO				
6	2004	Caspian Sea	YP355	-40°C	Fixed				
6	2003	Russia	YP460	-40°C	Fixed				
n	2002	Russia	YP420	-40°C	Fixed				

Bases in Japan

Sales Offices Steelworks

Research Laboratories

Overseas Offices and Branches

NIPPON STEEL NORTH AMERICA, INC.

New York Office 1251 Avenue of the Americas, Suite 2320, New York, N.Y. 10020, U.S.A. Tel: 1-212-486-7150 / Fax: 1-212-593-3049

NIPPON STEEL NORTH AMERICA, INC.

Chicago Office

900 North Michigan Avenue, Suite 1820, Chicago, Illinois 60611, U.S.A. Tel: 1-312-751-0800 / Fax: 1-312-751-0345

NIPPON STEEL NORTH AMERICA. INC.

Houston Office

945 Bunker Hill, Suite 600, Houston, Texas 77024, U.S.A. Tel: 1-713-654-7111 / Fax: 1-713-654-1261

NIPPON STEEL NORTH AMERICA, INC.

Mexico Representative Office Calle de Ruben Dario 281 No. 2101, Colonia Bosque de Chapultepec, Mexico, D.F.11580, Mexico

Tel: 52-55-5281-6123 / Fax: 52-55-5280-0501

NIPPON STEEL AMÉRICA DO SUL LTDA.

São Paulo Office

Av. Paulista 2300, 18º andar conj. 181 e 183 Bela Vista, São Paulo, SP CEP 01310-300, Brasil Tel: 55-11-3563-1900 / Fax: 55-11-3563-1901

NIPPON STEEL AMÉRICA DO SUL LTDA.

Belo Horizonte Office

Av. do Contorno, 6594-13° andar-Sala 1302, Belo Horizonte-MG, CEP 30110-044, Brasil Tel: 55-31-2191-4000 / Fax: 55-31-2191-4880

NIPPON STEEL CORPORATION European Office

Am Seestern 8, 40547 Düsseldorf Federal Republic of Germany Tel: 49-211-5306680 / Fax: 49-211-5961163 E-mail: info@de.nipponsteel.com

NIPPON STEEL CORPORATION Dubai Office (PO Box: 18347) JAFZA16, Office No.613 Jebel Ali Free Zone, Dubai, U.A.E. Tel: 971-4-887-6020 / Fax: 971-4-887-0206

NIPPON STEEL AUSTRALIA PTY. LIMITED

Sydney Office Level 5, 20 Hunter Street, Sydney, N.S.W. 2000, Australia Tel: 61-2-8036-6600 / Fax: 61-2-9221-5277

NIPPON STEEL CONSULTING (BEIJING) CO.,LTD.

Room No.5002, Chang Fu Gong Center, Jian Guo Men Wai Da Jie 26, Chaoyang District, 100022 Beijing, P.R. China Tel: 86-10-6513-8593 / Fax: 86-10-6513-7197

NIPPON STEEL CONSULTING (BEIJING) CO.,LTD.

- Muroran Work

Shanghai Office Room No.808, UNITED PLAZA, 1468 Nanjing Road West, Jingan District, 200040 Shanghai, P.R. China Tel: 86-21-6247-9900 / Fax: 86-21-6247-1858

NIPPON STEEL CONSULTING (BEIJING) CO.,LTD.

Guangzhou Office Room 1402, G.T. Land Plaza, D, No.8 Zhujiang West Road, Zhujiang New Town, Guangzhou, 510623, P.R. China Tel: 86-20-8386-8178 / Fax: 86-20-8386-7066

NIPPON STEEL SOUTHEAST ASIA PTE. LTD.

16 Raffles Quay #17-01 Hong Leong Building, Singapore 048581 Tel: 65-6223-6777 / Fax: 65-6224-4207 E-mail: nssm.s3a.sg@sg.nipponsteel.com

PT. NIPPON STEEL INDONESIA

Jakarta Representative Office Sentral Senayan II 201-2C Ground Floor, Jl. Asia Afrika No.8, Gelora Bung Karno-Senayan, Jakarta Pusat 10270, Indonesia Tel: 62-21-290-39210 / Fax: 62-21-290-39211

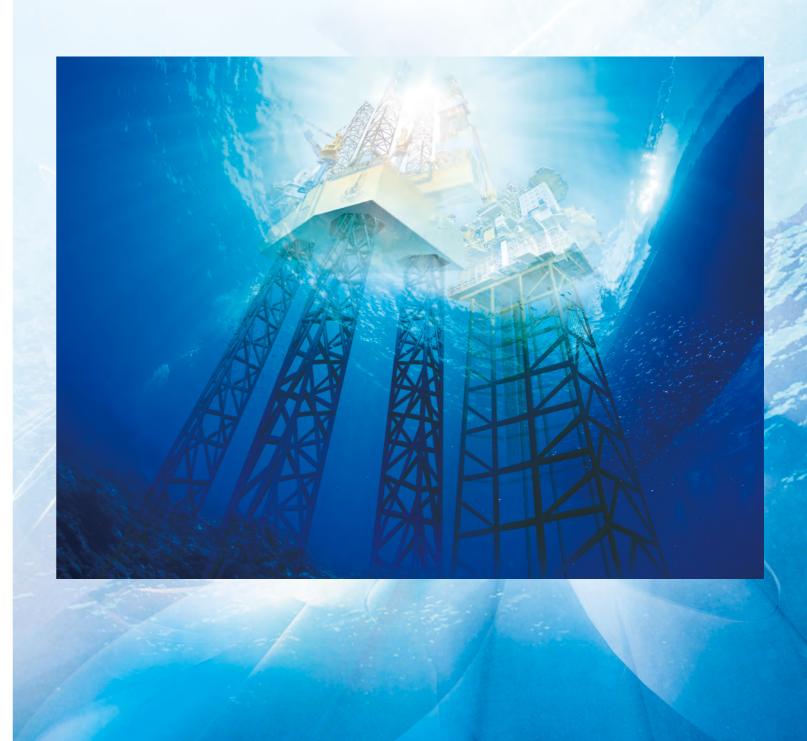
NIPPON STEEL (THAILAND) CO., LTD.

Bangkok Office

909 Ample Tower 14th, Debaratana Road, Khwang Bangna-Nuea, Khet Bangna, Bangkok. 10260, Thailand Tel: 66-2-744-1480 / Fax: 66-2-744-1485

NIPPON STEEL VIETNAM COMPANY LIMITED

Ho Chi Minh City Office Room 2001, 20th Floor, SUNWAH TOWER, 115 Nguyen Hue Blvd, Ben Nghe Ward, Dist.1, Ho Chi Minh City, Vietnam Tel: 84-28-3914-7016 / Fax:84-28-3914-7018


Ha Noi Office Room 402, 4th floor, Corner Stone Building, 16 Phan Chu Trinh, Hoan Kiem, Ha Noi, Vietnam Tel: 84-24-3633-2029

NIPPON STEEL INDIA PRIVATE LIMITED

Prius Platinum, A Wing, Ground Floor, D-3, Dist. Centre, Saket, New Delhi -110017, INDIA Tel: 91-11-4763-0000 / Fax: 91-11-4763-0001

If you have any questions please contact below.

Mail GR_J_01_energy@jp.nipponsteel.com

High-tensile / Excellent Quality HAZ Toughness Plate

Weight reductions

Reduced life-cycle costs

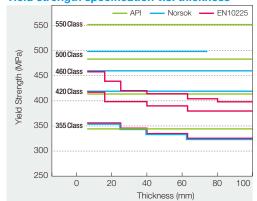
Shortening of lead times

- The needs of high tensile steel are growing up as the size of facility increases.
- NIPPON STEEL has wide range Pre-Qualification material with high toughness for offshore structure using advanced technology.
- NIPPON STEEL has supplied offshore structural steel for various projects all over the world.
- NIPPON STEEL has applied the TMCP^(*1) process to offshore structural high tensile steel with excellent weldability and HAZ^(*2) toughness for the first time in the world.
 - (*1:Thermo Mechanical Control Process. *2:Heat Affected Zone)
- The shift to high tensile steel leads the reduction in the size and weight of steel structure.
 As the result, it is possible to reduce "Distribution and installation cost" while mounting equipment.

Benefits of use

Compatible with the needs in place for high strength structures

- In addition to Gr50 and Gr60 steel plates specified by API standards, we have newly developed Gr80 steel plates, being the first in the world to put it into practical use.
- Weight reductions
 - Allows for capacity in TOPSIDE-loaded equipment.


Steel Grade	API 2W	EN10225	NORSOK
		S355G 7+M	
355	GR50	S355G 8+M	MDS-Y20
333	GNOO	S355G 9+M	MDS-Y25
		S355G10+M	
420	GR60	S420G1+M	MDS-Y30
420	GROU	S420G2+M	MDS-Y35
460		S460G1+M	MDS-Y40
460		S460G2+M	MDS-Y45
500	GR70	(S500G1+M)	MDS-Y50
500		(S500G2+M)	MDS-Y55
EEO	CDOO	(CEEOMO)	(MDS-Y60)
550	GR80	(S550M3)	(MDS-Y65)

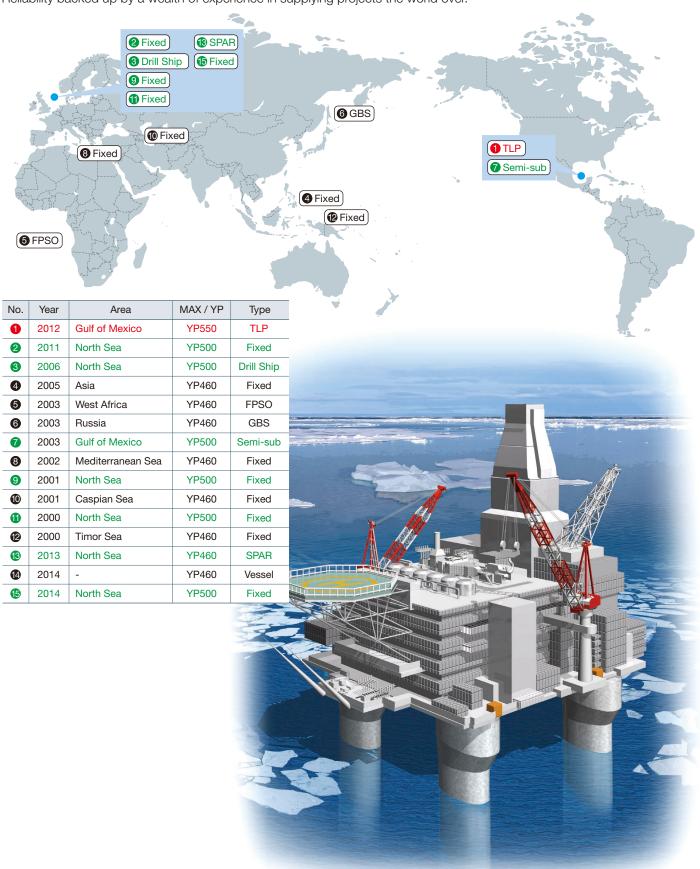
Required Plate Thicknesses *YP Design Example Used					
150 mm	100 %	_			
124 mm	83 %	-17 %			
112 mm	75 %	-25 %			
103 mm	69 %	-31 %			
93 mm	62 %	-38 %			

Features

- Excellent TMCP technology
- 2 Improvement of HAZ toughness
- Good weldability
- World-class product lineup

Yield strength specification v.s. thickness

Improvement of HAZ toughness technology



Notice:While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication. The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

Areas of use

Reliability backed up by a wealth of experience in supplying projects the world over.

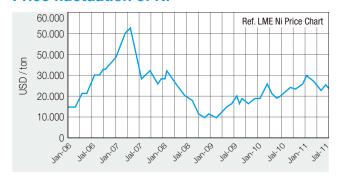
TMCP-type Steel Plates for LNG Storage Tanks A841Gr-G (Ni Reduction of Over 20%)

Reduced life-cycle costs

- New development of 6-7% Ni steel for LNG storage tanks has an equal or improved performance compared with conventional 9% Ni steel.
- TMCP technology reduced the amount of nickel and improved strength compared with 9% Ni steel.
- Up to 4,500 mm width is available.
- Supple Record; approximately 19,000tons for 6 LNG storage tanks.

Advantages

A841 Grade G steel for LNG storage tanks

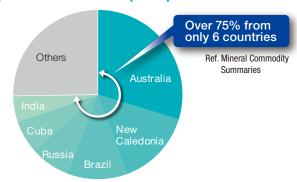

Preservation of valuable rare metal "Nickel"

Mitigation to the price fluctuation risk of nickel

Construction cost reduction of LNG tank

Fracture toughness equivalent to 9%Ni steel plate

Price fluctuation of Ni



Advantage of A841 Grade G

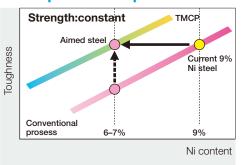
		Item	Reduction	Compare With	Remark		
A841		Nickel Cost Ni:6.0–7.5%]⇔(8.5–9.5%)		A553			
Grade G	wall thickness	(Material Cost)	9%	7,000	Class 10 Use		
		(Transportation Cost)	9%				

	Class 9	Class 10
Yield Strength (0.2% offset), MPa, min	585	620
Tensile Strength, MPa	690-825	750—855
El in 50mm, min, %	20	20

Deposits share of Ni (2011)

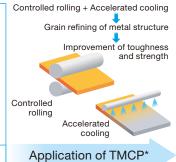
Key technologies

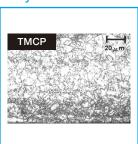
Refined Microstructure produced by


Thermo-Mechanical Control Process (TMCP)

Improvement of HAZ Toughness obtained by

Optimize Chemical Composision


Over 20% Nickel reduction with equivalent or superior properties to 9% Ni steel plate


Concept of development

Key technology: Refinement of microstructure by TMCP

Application of Two

Average grain size : 8µm

Code registration in international standards

	Organization	Designation	Incorporation
	ASME Code Case 2736 for Di Code Case 2737 for Di		August, 2013
Dooign	API	620 Appendix. Q	April, 2018
Design	EN 14620		Under preparation for proposal
	Japanese Government	Gas Business act	March, 2011
	ASTM	A841 grade G	Oct, 2013
	EN	10028	Under preparation for proposal
Material	JIS	SL7N590	March, 2013
	Class NK KL7N590		May, 2014
	DNV	NV5Ni - MOD	Feb, 2014

Welding consumables for A841Gr-G & 9% Ni steel

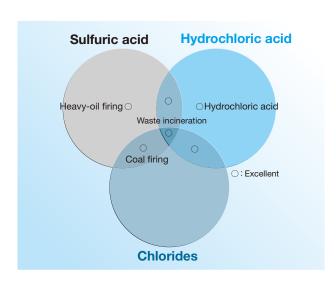
Welding Method	Brand Name	AWS
014014	YAWATA WELD B(M)	A5.11 ENiCrFe-4
SMAW	NITTETSU WELD 196	A5.11 ENiMo-9
GTAW	NITTETSU FILLER 196	A5.14 ERNiMo-9
SAW	NITTETSU FLUX 10H x NITTETSU FILLER 196	A5.14 ERNiMo-9 Modify

Supply record

Owner	Tank Capacity	Supply Record	Remark
Osaka Gas	230,000 m ³	3,700MT	Aboveground Tank
Chita	220,000 m ³	450MT	Underground Tank
Fukushima	230,000 m ³	3,500MT	Aboveground Tank
Fukushima	230,000 m ³	3,700 MT	Aboveground Tank
Hitachi	230,000 m ³	3,700MT	Aboveground Tank
Nihama	230,000 m ³	3,700MT	Aboveground Tank
	Osaka Gas Chita Fukushima Fukushima Hitachi	Owner Capacity Osaka Gas 230,000m³ Chita 220,000m³ Fukushima 230,000m³ Fukushima 230,000m³ Hitachi 230,000m³	Owner Capacity Record Osaka Gas 230,000m³ 3,700MT Chita 220,000m³ 450 MT Fukushima 230,000m³ 3,500MT Fukushima 230,000m³ 3,700 MT Hitachi 230,000m³ 3,700MT

NIPPON STEEL CORPORATION

^{*:} Termo-Mechanical Control Process


S-TEN[™]1

Sulfuric Acid and Hybrochloric Acid Dew-point Corrosion-resistant Steel

Reduced life-cycle costs

S-TEN1 is a sulfuric acid and hydrochloric acid dewpoint corrosion-resistant steel developed by NIPPON STEEL using proprietary technology.

- S-TEN1 exhibits the best resistance to sulfuric acid and hydrochloric acid dew-point corrosion found in the flue-gas treatment equipment used with coal-fired boilers, waste incineration plants, etc. (This steel has the finest application record in the field of thermal power generation and waste incineration plants, according to surveys conducted by NIPPON STEEL)
- S-TEN1 exhibits the best resistance to sulfuric acid and hydrochloric acid dew-point corrosion found in hydrochloric acid pickling, industrial sulfuric acid and other tanks.
- S-TEN was awarded the Ichimura Industrial Award Achivement Award in 2007.

Advantages

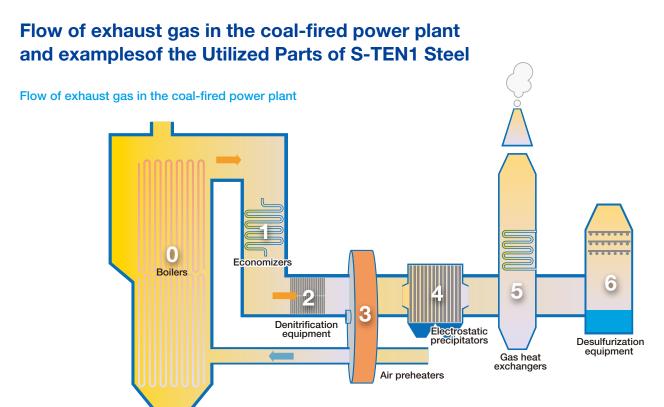
- Displays around 5 to 10 times the corrosion resistance of regular steel and stainless steel against high-temperature, high-concentration sulfuric acid and high-temperature, high-concentration hydrochloric acid.
- Offers economic benefits over stainless steel.
- Wide lineup that encompasses everything from hot-rolled and cold-rolled steel sheets to steel piping and welding materials.
- Features a lineup of dedicated welding materials, making welding possible under the same conditions as ordinary steel of the same strength.

Sulfuric acid resistance

of various steel products (50%, 70°C, H₂SO₄)

120
100
80
100
90
S-TEN1 COR-TEN A SUS 304 SS 400

10.5% Hydrochloric acid, 60°C, 72 Hrs


10.5% Hydrochloric acid, 80°C, 144 Hrs

Notice:While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication. The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

Application examples

		Steel Pipes Steel Plates		Steel Sheets		
			Welded	Steel Flates	Hot-rolled	Cold-rolled
0	Boilers	Boiler Tube				
4	Economizers	Boiler Tube	0	(O)		
- 1	LCOHOITIZEIS	Fin				0
2	Denitrification Equipment	Casing		(()	0	
3	3 Air Preheaters	Boiler Tube	0	(()		
3	All Flelleaters	Element				0
4	Electrostatic Precipitators	Casing		(()	0	
		Boiler Tube	0	(O)		
5	Gas Heat Exchangers	Fin				0
		Element				0
6	Desulfurization Equipment	Casing		(O)	0	

Welding materials

As the welding material for exclusive use for S-TEN1, NIPPON STEEL WELDING & ENGINEERING CO.,LTD.* supplies the following products.

*Inquiry: NIPPON STEEL WELDING & ENGINEERING CO.,LTD. Shingu Bldg.,2-4-2 Toyo, Koto-ku,Tokyo 135-0016 Tel: +81-3-6388-9000 Fax: +81-3-6388-9160

	Kind of Shielding Material					
Grade	Shielded Metal Arc Welding	Gas Shielded M	Submerged Arc Welding			
	(SMAW)	MAG Welding (FCAW) TIG Welding (GTAW)		(SAW)		
S-TEN1	ST-16M ¹⁾ (☆JIS Z 3211 E4916G)	SF-1ST (☆JIS Z 3313 T49J0T1-1CA-UH5)	YT-1ST (☆JIS Z 3313 T49J0TG-1GA-U)	Y-1ST × NB-1ST (☆JIS Z 3183 S502-H)		

Notes: 1) Low-hydrogen type

Mark "\$\pm'\$" means that the product meets the classification requirements but that the JIS mark system is not applicable to the classification.

NIPPON STEEL's High Grade H-Shapes

Expansion of the development area

Shortening of lead times/Reduction in manufacturing costs

The NIPPON STEEL began producing and selling H-shapes in 1959.

Since then, it has consistently produced high quality H-shapes and it is used in structures all over the world.

With the recent increase in world energy demand, the company has been activity in also focusing its attention to fields relating to energy development for the sale of its products.

Characteristic of our H-shapes

Availability of various size

- ~W40, ~UB1016, ~HE1000, ~JIS H1000
- NSHYPER BEAM™ (47 series and 611 size)
- Taylor made sizes

ex. 1000×400×25/55

920×430×30/50 used for HRSG Column.

Availability of various steel grades

Standards : ASTM, BS, EN, JIS, AS

• CVN : Up to -40°C/50J at tf≦40mm

(-40°F/37ft-lbf at tf≦1.5inch)

Steel grade : ~YP355

Feature of NSHYPER BEAM™

NSHYPER BEAM is a high quality rolled H-shapes which acts as an alternative to welded H-shapes from the sheer variation in sizes available.

The benefits of non-welded steel (no need to fabri-

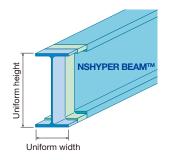
cate / no need welding inspections / high quality) have received much praise, and this has been widely adopted in the form of H-shaps for steel frames in the natural resource and energy fields.

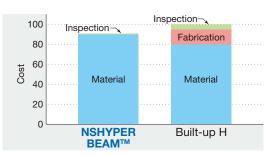
Advantages of NSHYPER BEAM™

Saving cost on steel work

Without built-H process

Wider size availabilities


- 47 series and 611 size
- Uniform height and width within a same size series.


Shortened fabrication term

- Cutting the welding and inspection processes
- Free from critical path on the built-H process

Quality improvement because of no welding process

 Free from heat damage and fatigue problems caused by welding

NSHYPER BEAM™ series

			Fla	nge Width (n	nm)	
		200	250	300	350	400
	1000		0	0	0	0
	950		0	0	0	0
	900		0	0	0	0
	850		0	0	0	0
	800		0	0	0	0
Web	750		0	0	0	0
Height	700	0	0	0	0	0
(mm)	650	0	0	0		
	600	0	0	0		
	550	0	0	0		
	500	0	0	0		
	450	0	0	0		
	400	0	0	0		

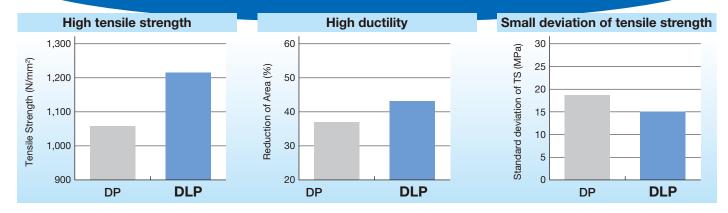
CVN Availability

OTT Availab									
Test 0	Condition of CVN	I		Availability [Case≥WF16(400mm)]					
Landin	T1	Minimum	CE	Pcm	Flange Thickness [Unit:inch(mm)]				
Location of Test Piece	Test Temperature	Average Energy	Average (0/) (0/)		Ft ≤ 1 (25)	1 ≤ Ft ≤ 1.75 (25) (40)	1.75 ≤ Ft ≤1.97 (40) (40)		
	32°F (0°C)	37ft-lbf (50J)		≤0.24*	0	0	0		
Longitudinal (Location:1/6F)	–4°F (–20°C)		≤0.43*		0	0	0		
	-40°F (-40°C)				0	0	NA		
Transverse (Location:1/6F)	–4°F (–20°C)				0	NA	NA		
	-40°F (-40°C)				0	NA	NA		

CE = C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V)/5

Pcm = C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B

*:Please ask us.

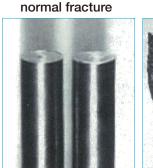

High Tensile Wire Rod for Rope

Reduced life-cycle costs

Lead-free In-line heat treatment (World First)

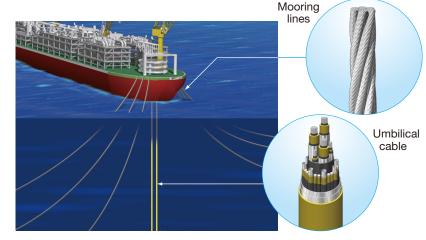
DLP Conventional type:DP Cooled by air 88888888888 Finishing mills 00000000 00000000 No.1 No.2 Cleaning Reforming salt tank salt tank tank tub

DLP wire rod is suitable for high quality wire products which need high performance.



High strength, high ductility DLP wire materials

Low ductility wire


delamination

Development of high strength, high ductility wire

High ductility wire

Notice:While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication. The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

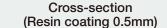
Size

Result

Grade

Resin Coated Flat Wire for Extra Flexibility

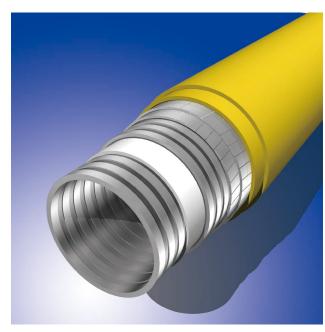
T.S.


Reduced life-cycle costs

E.L. Torsion HIC test (96h) SSC Test (Bending, Torsion) F. 2.5% S. No Cracking No Cracking No Cracking

TARGET	3 ×11	2000MPa 以上	2.5% ≦	5% ≦	No Cracking	No Cracking	No Cracking No Breakung
Data	3 ×11	2018	5.1	18.6	No Cracking	No Cracking	No Cracking No Breakung
Result			\cap				\cap

Appearance



Resin coating products

Welding Consumables for Offshore

Expansion of the development area

Weight reductions

Characteristics

Deposited metal shows excellent strength and toughness at low temperatures. Crack resistance is extremely high.

Applications

Welding of high tensile strength steel for offshore structure.

Jack-up Rigs

Steel	Welding	Brand Name	AWS	Polarity,	Approvals		
Grade	Process	Diana Name	Classification	Shielding gas	ABS	DNV GL	
	SMAW	L-80SN	A5.5 E11016-G	AC, DCEP	5Y690MW	V Y69H15	
YS690	SAW	NB-250J (Flux) & Y-80J (Wire)	A5.23 F11A10-EG-M3	AC, DCEP	5YQ690M	Ⅳ Y69M*	
	GMAW	YM-80A	A5.28 ER110S-G	Ar+20%CO2	4YQ690SA	IV Y69MS	
	GIVIAVV	YM-69F	A5.28 ER110S-G	Ar+10%CO ₂	5YQ690SA	V Y69MS	

*Plus manuf's spec. (vE-60°C≧47J)

Top-side

Charl	Welding		AVAC	Delevity	Applica	ole Temp.	
Steel Grade	3		AWS Classification	Polarity, Shielding gas	vET ≧47J	CTOD* ≥0.25mm	Approvals
VCOEE	FCAW		A5.36 E81T1-C1A8-K2-H4 (A5.29 E81T1-GC)	CO ₂	−60°C	−20°C	ABS, LR, DNV GL, BV, RS, NK
YS355 SA	SAW	NB-55 & Y-DS	A5.17 F7A8-EH14 F7P8-EH14	DCEP/AC	−60°C	−40°C	ABS, LR, DNV GL, BV, NK
	FOAM	SF-47E Seamless	A5.36 E81T1-C1A8-Ni1-H4 (A5.29 E81T1-Ni1C-J)	CO ₂	−60°C	−20°C	ABS, LR, DNV GL, NK
YS420 YS460	FCAW	SF-3AM Seamless	A5.36 E81T1-M21A8-Ni1-H4 (A5.29 E81T1-GM)	80%Ar+20%CO ₂	−60°C	−40°C	ABS, LR, DNV GL
	SAW	NB-55 & Y-CMS	A5.23 F8A8-EA4-A4 F8P8-EA4-A4	DCEP/AC	−60°C	−40°C	ABS, LR, DNV GL, NK
	ECA)A/	SF-50E Seamless	A5.36 E91T1-C1A8-Ni2-H4 (A5.29 E91T1-Ni2C-J)	CO ₂	−60°C	−40°C	ABS, DNV GL, BV
YS500	FCAW	SF-50A Seamless	A5.36 E91T1-M21A4-K2-H4 (A5.29 E91T1-GM)	80%Ar+20%CO2	−40°C	−10°C	LR, DNV GL
	SAW	NB-250H & Y-204B	A5.23 F9A8-EG-G F9P8-EG-G	DCEP/AC	−60°C	−10°C	ABS, DNV GL, BV

*Information only

Mechanical property

Mechanical properties of weld metal (YS690 class)

	Duand Name	Took Diete	Malelie e		Exampl	les of Mecha	nical Proper	ties of Weld	Metal	
Process	Brand Name (Dia.)	Test Plate (Thk)	Welding Position	Location	0.2% PS (MPa)	T.S (MPa)	EL. (%)		vE (J)	
		HT780	Flat	1/4t	817	840	21		47, 65, 46 Avg.53	
SMAW L-80SN (4.0ø, 5.0ø)		(75mm)	Tiat	1/2t	839	851	20		50, 52, 58 Avg.53	
	HT780	Horizontal	1/4t	800	819	22	–60°C	95, 97, 104 Avg.99		
	(75mm)	Horizontai	1/2t	830	858	20		85, 85, 93 Avg.88		
		HT780 (75mm)	Vertical-up	1/4t	735	783	23		78, 70, 68 Avg.72	
	NB-250J ×	HT780 (75mm)	Flat	1/4t	742	814	23	–40°C	148, 119.145 Avg.138	
SAW					744	818	23			
SAW	YM-80J (4.0ø)			1/4t	738	804	24	-400	147, 167, 152	
				1741	734	807	23		Avg.155	
	YM-80A (1.2ø)	HT780	Vertical-up	1/4t	698	898	22	_40°C	73, 76, 74	
GMAW —	Ar-20%CO ₂	(75mm)	vertical-up	1/41	690	893	21	-40 O	Avg.74	
	YM-69F (1.2ø)	HT780	Flat	3/4t	_	806	_	−60°C	76, 92, 106 Avg.91	
	Ar-10%CO ₂	(75mm)	Vertical-up	3/4t	815	910	23	-000	103, 95, 103 Avg.100	

			Maleline	I la at la acut	Examp	les of Mecha	anical Proper	ties of Weld Metal
Process	Brand Name	Steel	Welding Position	Heat Input (kJ/cm)	0.2% PS (MPa)	T.S (MPa)	vET (J)	
SMAW	1 000N	WELTEN780	Horizontal	20.5 (AC)	830	858	-60°C	85, 85, 93 Avg.88
	L-80SN	(T=75mm)	Vertical-up	32.6 (AC)	735	783	-60°C	78, 70, 68 Avg.72
	NB-250H & Y-80M	WELTEN780 (T=75mm)	Flat	39.6 (AC)	744	818	-40°C	148, 119, 145 Avg.138
SAW	NB-250J & Y-80J	WELTEN780 (T=38mm)	F	45.3	785	5 851	-40°C	103,59,87 Avg. 87
			Flat	(DCEP)			-60°C	59, 61, 59 Avg. 60
GMAW	YM-80A	WELTEN780 (T=75mm)	Vertical-up	30.0	698	898	-40°C	73, 76, 74 Avg. 74
(Ar+20%CO ₂)	YM-69F	WELTEN780 (T=75mm)	Vertical-up	30.0	815	910	-60°C	103,95,103 Avg. 100

Warning!

Fumes and gas may be hazardous to your health. Please take appropriate preventive measures such as the implementation of ventilation as well as wearing a protector for breathing. Arc light is harmful to the eyes and skin. Please use appropriate shielding measures. Please do not touch anything where electricity is activated. It may cause death.

- Request to Customers

 1 Various data of distinctive features such as welding materials, deposited metal, weld metal, etc. shown in this catalog are meant to explain the representative properties and performance of the products and are not to be taken as a guarantee except those which are specificed clearly as "Specification".
- 2 In regard to the properties of welded structures, please be careful since design of structures, chemical compositions of steel plates, construction method, welding conditions, ability of constructor, etc. will affect the results.
- 3 Please understand that we are not able to take responsibility for damages caused by the misuse of the technical information written in this catalog.

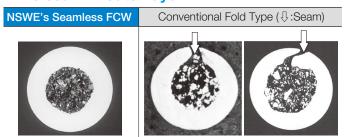
NIPPON STEEL WELDING & ENGINEERING CO.,LTD.

Energy Solutions from NIPPON STEEL Group

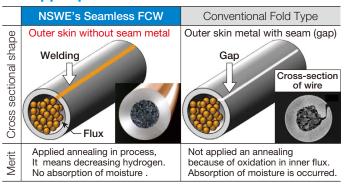
Superiority of Seamless Flux Cored Wires (NSWE's SFW)

to conventional flux cored wires & conventional seamless FCW (Filling by vibration)

Expansion of the development area

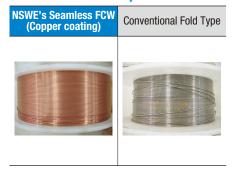

Weight reductions

Reduced life-cycle costs

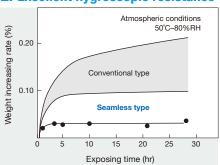

Shortening of lead times/ Juction in manufacturing costs

Difference between NSWE's SFW and conventional fold type

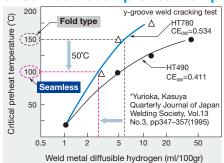
1. No seam in outer layer



2. Copper plated surface



Superiority of NSWE's SFW to conventional fold type


1. Excellent rust prevention

2. Excellent hygroscopic resistance

3. Can decrease preheat temp.

- Customers can store for extended periods of time.
- Can decrease preheat temp.
- There is no need for rework of weld defects like the wormhole porosity or pit.

4. Excellent tip abrasion resistance

TI EXOCITOR UP U	- Exocutorit dip distraction recoletance									
Conditions	NSWE's Seamless FCW	Conventional Type								
Continuous welding 10min ×10times (Accumulating Total 100min) Wire Dia.:1.2mm Welding Current:270A	Tar	3 cm 1 7 cm 1								
Abrasion Amount of Top of The Tip*	0.13mm	0.45mm								

*: (Circumscribed circle of tip hole after welding)

- (Diameter of the tip hole before welding)

When NSWE's SFW is used, the life of the tip is about 3.5 times as long as instances where the conventional fold type is used. (When NSWE's SFW is used, the abrasion of the tip is about 1/3.5.)

Reasons the life of the tip is so long are as follows:

- a) The surface of NSWE's SFW is plated with copper and, therefore, friction is small.
- b) The cross-sectional shape of NSWE's SFW is one of point symmetry. Therefore, the wire is fed out straight.

Can reduce usage of tip

NIPPON STEEL WELDING & ENGINEERING CO.,LTD.

NSWE's SFW lineup

Welding Process	Shielding Gas	Polarity	Brand Name	d Name AWS Classification		Heat Input, Typical (kJ/cm) Applicable Temp. (°C) Input, Typical (kJ/cm) YS Grade (MPa) CVN≥47J, δ≥0.25mm		Temp. (°C) CVN≧47J,	Chemical Compositions of Deposited Metal (wt%) <typical></typical>			
				A5 00 574T 4 0	, ,		CVN	CTOD (δ)	С	Si	Mn	Ni
	100%		SF-1	A5.20 E71T-1C A5.36 E71T1-C1A0-CS1		375	0	_	0.06	0.50	1.40	
			SF-1E	A5.20 E71T-1C A5.36 E71T1-C1A2-CS1		375	-20	_	0.06	0.50	1.29	0.30
			SF-3	A5.20 E71T-12C A5.36 E71T12-C1A2-CS2		375	-30	_	0.04	0.37	1.22	0.35
		DCEP	SF-3M	A5.20 E71T-9C-J A5.36 E71T1-C1A4-CS1	F, H: 7-20 V-up, OH: 10-25	400	-40	-10	0.04	0.41	1.27	0.36
	CO ₂	DCEP	SF-3E	A5.29 E81T1-GC A5.36 E81T1-C1A4-CS1		420	-40	-10	0.05	0.44	1.33	0.39
			SF-36E	A5.29 E81T1-GC A5.36 E81T1-C1A8-K2-H4	1	400	-60	-20	0.06	0.40	1.60	1.40
			SF-47E	A5.29 E81T1-Ni1C-J A5.36 E81T1-C1A8-Ni1-H4		460	-60	-30	0.05	0.49	1.42	1.03
			SF-50E	A5.29 E91T1-Ni2C-J A5.36 E91T1-C1A8-Ni2-H4		500	-60	-40	0.05	0.33	1.41	2.42
FCAW-G			SF-1A	A5.20 E71T-1M A5.36 E71T1-M21A2-CS1		375	-20	_	0.05	0.52	1.22	_
			SF-3A	A5.20 E71T-9M-J A5.36 E71T1-M21A4-CS1	-	420	-40	-10	0.06	0.48	1.54	0.35
			SM-3A	A5.18 E70C-GM A5.36 E71T15-M21A4-CS1		375	-40	_	0.05	0.66	1.69	_
	80%Ar+	DCEP	SF-3AMSR	A5.29 E71T1-GM A5.36 E71T1-M21A6-K6-H4 E71T1-M21P6-K6-H4	F, H: 7-20	420	-40	-10 (SR: 620°C, 4hr)	0.05	0.30	1.20	0.96
	20%CO2	DCEP	SF-3AM	A5.29 E81T1-GM A5.36 E81T1-M21A8-Ni1-H4	V-up, OH: 10-25	460	-60	-40	0.06	0.33	1.26	1.00
			SF-36EA	A5.29 E81T1-GM A5.36 E81T1-M21A6-K6-H4 E81T1-M21P6-K6-H4	10 20	400	-60	-10 (SR: 580°C, 4hr)	0.05	0.33	1.17	0.85
			SF-50A	A5.29 E91T1-GM A5.36 E91T1-M21A4-K2-H4		500	-40	-10	0.05	0.44	1.15	1.72
			SF-70A	A5.29 E101T1-GM-H4 A5.36 E101T1-M21A4-K2-H4		620	-51	-20	0.07	0.40	1.68	1.65

Warning!

Fumes and gas may be hazardous to your health. Please take appropriate preventive measures such as the implementation of ventilation as well as wearing a protector for breathing. Arc light is harmful to the eyes and skin. Please use appropriate shielding measures. Please do not touch anything where electricity is activated. It may cause death.

- Request to Customers

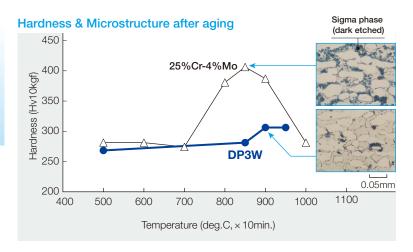
 1 Various data of distinctive features such as welding materials, deposited metal, weld metal, etc. shown in this catalog are meant to explain the representative properties and performance of the products and are not to be taken as a guarantee except those which are specificed clearly as "Specification".
- 2 In regard to the properties of welded structures, please be careful since design of structures, chemical compositions of steel plates, construction method, welding conditions, ability of constructor, etc. will affect the results.
- 3 Please understand that we are not able to take responsibility for damages caused by the misuse of the technical information written in this catalog.

NIPPON STEEL WELDING & ENGINEERING CO.,LTD.

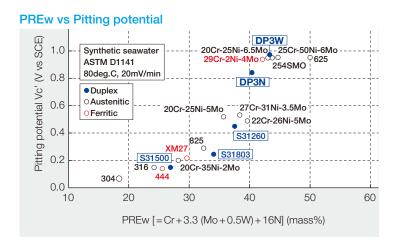
NIPPON STEEL's Duplex Stainless Steel Seamless Pipe & Tube

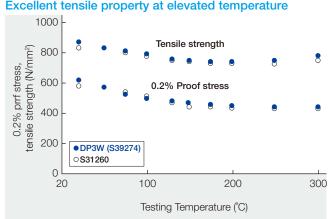
Expansion of the development area

Shortening of lead times/Reduction in manufacturing costs


Grade	UNS or NEXAGE™ Designation	Chemical Composition (%)	Features Application
L out alloy	S31500	18.5Cr - 5Ni - 2.7Mo	Heat exchanger
Low alloy	DP11A	24Cr - 4Ni - Mo - Cu - N	Even pitting resistance with 316L
Standard	S31803	22.5Cr - 5Ni - 3Mo - N	Good pitting resistance
Standard	S32205	22.7Cr - 6Ni - 3.4Mo - N	S31803 with controlled Mo, N
Lligh alloy	S31260	25Cr - 7Ni - 3Mo - N - W	Better pitting resistance
High alloy	DP3N (S31260)	25.5Cr - 7Ni - 3.3Mo - N - W	Superior pitting resistance
C	S32750	25Cr - 7Ni - 4Mo - N	Superior pitting resistance
Super	DP3W (S39274)	25Cr - 7Ni - 3.2Mo - 2W - N	Heat exchanger, Umbilical tube
Lluca	DP12 (S31260)	25Cr - 7Ni - 2.7Mo - N - W	Optimized S31260 for urea
Urea	DP28W™ (S32808)	27.5Cr - 7.7Ni - Mo - 2.2W - N	Best material for urea

Main features of DP3W


- Excellent resistance to localized corrosion
- High resistance to general corrosion, especially in sour environment
- Excellent mechanical and physical properties
- Good weldability
- Low sensitivity to sigma phase precipitation


Standard

- UNS No.S39274
- ASTM A789/A789M, A790/A790M, A240/A240M, A480/A480M
- NACE MR0175
- NORSOK M-630

Chemical contents [mass%										[mass%]
С	Si	Mn	Р	S	Ni	Cr	Мо	N	Cu	W
Max. 0.030	Max. 0.80	Max. 1.00	Max. 0.030	Max. 0.020	6.0 – 8.0	24.0 – 26.0	2.5 – 3.5	0.24 - 0.32	0.20 - 0.80	1.50 – 2.50

NIPPON STEEL's Corrosion Resistant Alloy Seamless Pipe & Tube

Expansion of the development area

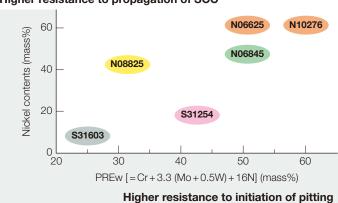
Shortening of lead times/Reduction in manufacturing costs

Grade	UNS or NEXAGE™ Designation	Chemical Composition (%)	Features Application
6%Mo+N	S31254	20Cr - 18Ni - 6Mo - Cu - 0.20N	High pitting resistance: Seawater heat exchanger tubes
High Ni	N08825	22Cr - 42Ni - 3Mo - 2Cu - Ti	High corrosion resistance & stress corrosion resistance: Heat exchanger tubes for petroleum refining
Ni base	NEXAGE™ 845 ■N06845	22.5Cr - 47Ni - 3Cu - 6Mo - 3.5W	Pitting corrosion & acid resistance: Highly corrosion-resistant pipe and heat exchanger tubes for chemical industry
NI Dase	NEXAGE™ 696 ■N06696	30Cr - 60Ni - 2Cu - 1.5Si	Metal dusting corrosion and carburization resistance with high temp. strength: Heating furnace pipes for synthetic gas plants
Ni base	■N06625	22Cr - 9Mo - Ni base	High corrosion resistance and stress corrosion cracking: Seawater heat exchanger tubes
High Mo	■N10276	15.5Cr - 16Mo - 5Fe - Ni base	High acid resistance: Heat exchanger tubes for chemical plants

Main features of N08825

N08825 offers optimum resistance to environments where reducing and oxidizing conditions are encountered in process streams. Alloying Nickel content to 40mass% exhibits proven resistance to chloride stress corrosion cracking. It also resist to intergranular attack caused by welding, and to pitting / crevice corrosion caused by chloride with hostile sour gas condition.

Main features of N06625


N06625 is a high Molybdenum, Niobium stabilized Nickel base super alloy with excellent resistance to localized corrosion, high temperature oxidation resistance and high strength. It resists stress corrosion cracking due to 62mass% nickel with outstanding resistance to pitting / crevice corrosion owing to 9mass% molybdenum.

Main features of N10276

N10276 is an extra low carbon-nickel base super alloy with high 15mass% molybdenum. It has superior corrosion resistance to a wide variety of environments, especially reducing media. It is widely used in hostile sour gas processing and production.

Comparison of Ni contents & pitting resistance

Higher resistance to propagation of SCC

Tensile properties at room temperature

UNS designation	TS, min. (MPa)	0.2%PS, min. (MPa)	EL, min. (%)
S31254	675	310	35
N08825	586	241	30
NEXAGE™ 845 ■N06845	690	276	30
NEXAGE™ 696 ■N06696	586	240	30
N06625	690 (Solution)	276 (Solution)	30
■N10276	690	283	40

Available Size Range

- NPS1/2~38
- •SCH10~160

NIPPON STEEL CORPORATION