

www.nipponsteel.com

NIPPON STEEL

CORSPACETM

Corrosion Resistance Steel for Repainting Cycle Extension

NETIS registration : KK-150056-VR

Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information.Please refrain from unauthorized reproduction or copying of the contents of this publication.The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

NIPPON STEEL CORPORATION

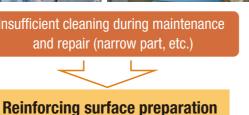
2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111 CORSPACE™ A104en_05_202409f © 2019, 2024 NIPPON STEEL CORPORATION

NIPPON STEEL CORPORATION

COrrosion Resistance Steel for rePAinting Cycle Extension **CORSPACE**TM

Necessity and expected effect

CORSPACE enables you to extend the coating cycle when compared with conventional steel, thereby reducing the life cycle cost.



Bridges are usually assumed to be in service for 100 years, and appropriate maintenance is required during the period. The major control item of the maintenance items is the progress of corrosion from the deteriorated part of the coating film, and periodical recoating is necessary. Recoating accounts for a large portion of the maintenance cost, and the reduction of the number of recoatings is desired from the viewpoint of reducing the environmental load.

Durability of coating pinhole part, coating defect part and round edge part

Repainting coat

Corrosion resistance steel for repainting cycle extension developed

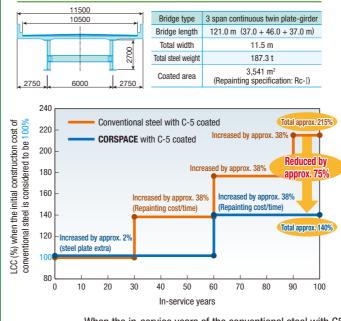
Effect expected using CORSPACE

Issues

 Corrosion from coating pinhole part and deteriorated part • Corrosion from sharp edge part of element

the maintenance cost and environmental load can be reduced by extending the recoating cycle.

In a severe salt damage environment,


CORSPACE

Advantages

Advantages in maintenance (Example of steel bridge LCC calculation)

conspace can extend the coating cycle to about double that compared with conventional steel under the same coating/installation environment. Therefore, while conventional steel needs coat repainting three times every 100 years, CORSPACE can reduce it to once and approximately halve the cost for repainting maintenance cost. Furthermore, reducing the number of times of coat repainting will contribute to VOC discharge control, and thus the environmental load can be reduced.

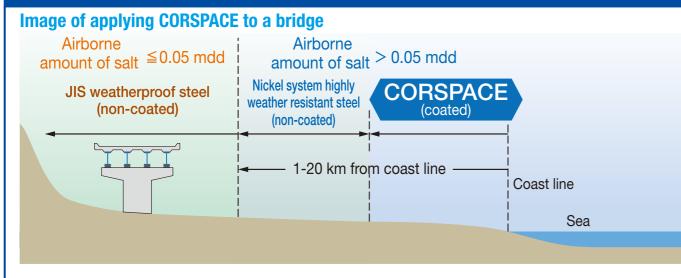
A 3 span continuous twin plate-girder

When the in-service years of the conventional steel with C5 coated in a salt damage environment is set to 30 years. When the repair/repainting is conducted for Rc-I coating on outer side of the girder.

Advantages in order reception, design and manufacturing

- We can serve you with the NETIS registration technology (KK-150056-VR certified in January 2021), technical proposals and construction performance rating.
- The standard extras are described as "Corrosion Resistance Steel for Repainting" Cycle Extension" in the Kensetsu Bukka (Construction Research Institute) and Sekisan Shirvou(Economic Research Association).
- CORSPACE is listed as a "tin added steel" that can be used in Hanshin Expressway Company Limited "Part 2 Structural Design Standards (Bridge Edition)" (January 2021) and Metropolitan Expressway Company Limited "Bridge Structure Design/Construction Procedure" (June 2015).
- CORSPACE conforms to all the JIS standards of steel plates used for bridges, and the plate manufacturable range is equivalent to that of conventional steel.
- Various types of workability such as cutting, bending, and welding are equivalent to that for conventional steel.
- We are lining up exclusive weld materials and bolts.

Point-adding factors in evaluation during proposal and after completion.


B 3 span continuous narrow box-girder 211.0 m (65.0 + 80.0 + 65.0 m) Bridge length Total width 11.5 m 761.7 t Total steel weig 14,370 m² Coated area Repainting specification: Rc-I) Conventional steel with C-5 coated 220 CORSPACE with C-5 coated 180 Increased by approx. 229 ting cost/tim 120 ased by approx. ncreased by (steel plate extra approx. 22% 8 10 20 30 40 50 60 70 80 90 In-service years

The life-cycle cost can be decreased by reducing the coat repainting to once every 100 years.

Features

Adding a fine amount of tin significantly reduces the corrosion mass. It produces an effect in coastal areas where salt damage is severe.

- CORSPACE has a function to inhibit corrosion of steel at the parts where the coating film is deteriorated or the film is thin.
- It delivers a much wider effect in a place where salt damage is severe, so its application to an environment to which a weather-resistant steel bridge cannot be applied is effective.
- The effect of application in an antifreezing agent spraying area can also be expected.

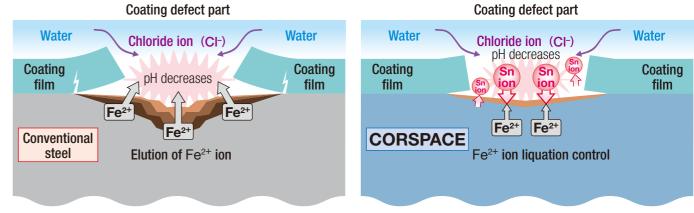
Conforming to all JIS standards required for bridges.

(corresponding to the tensile strength of class 400-570 N/mm²)

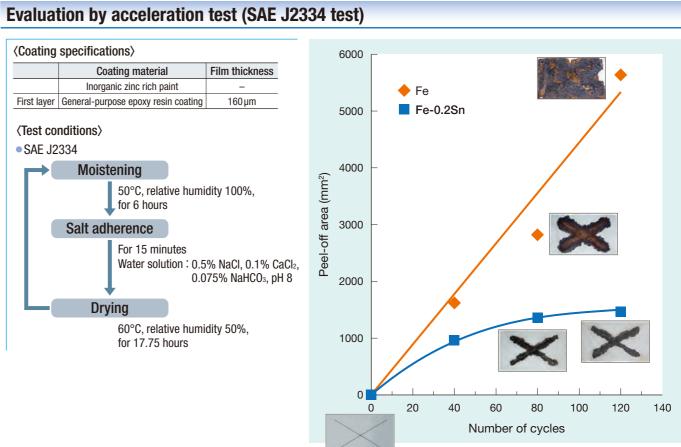
Conforming to three standards (steel plate)

- JIS G3101 Rolled steels for general structure (SS)
- JIS G3106 Rolled steels for welded structure (SM)
- JIS G3140 High yield strength steel plates for bridges (SBHS)

A fine amount of Tin (Sn) is added within the range of chemical components permitted by the above JIS standards.


Syml	bol of type	Applied plate thickness (mm)	Chemical component / Mechanical property		
SS400	-CORSPACE	6-100	In compliance with JIS G3101 SS400		
SM400	-CORSPACE	6-100	In compliance with JIS G3106 SM400		
SM490	-CORSPACE	6-100	In compliance with JIS G3106 SM490		
SM490Y	-CORSPACE	6-100	In compliance with JIS G3106 SM490Y		
SM520	-CORSPACE	6-100	In compliance with JIS G3106 SM520		
SM570	-CORSPACE	6-100	In compliance with JIS G3106 SM570		
SBHS400	-CORSPACE	6-100	In compliance with JIS G3140 SBHS400		
SBHS500	-CORSPACE	6-100 *	In compliance with JIS G3140 SBHS500		

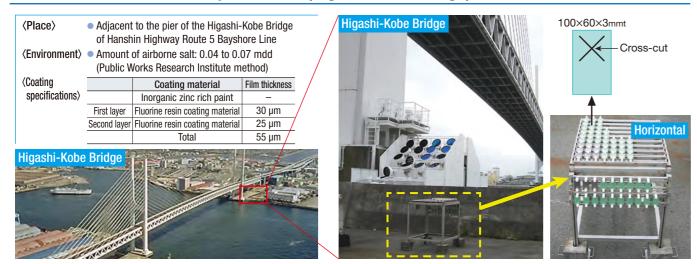
*SBHS500-CORSPACE: For plate thicknesses exceeding 50 mm, please consult us in advance.


CORSPACE

Mechanism

Corrosion of conventional steel progresses due to anode/cathode reaction. In the coating defect part of thin film under water, chloride ions condense and pH decreases, so the progress of corrosion is accelerated. Meanwhile, with CORSPACE, Sn also liquates out at the same time as the anode reaction of Fe (dissolution reaction), and the eluted Sn ions inhibit the elution of Fe ions, thereby preventing the progress of corrosion.

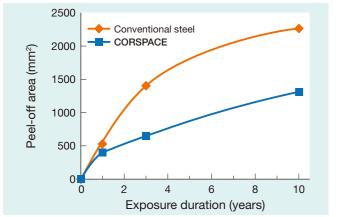
CORSPACE Corrosion-resistant properties



NIPPON STEEL CORPORATION

(acceleration test)

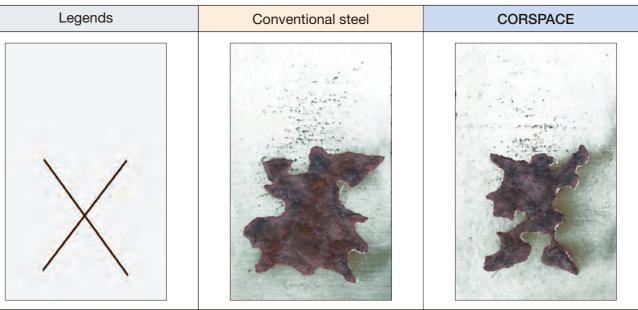
Corrosion-resistant properties (actual environment exposure test)


Evaluation after outdoor exposure test (Higashi-Kobe Bridge)

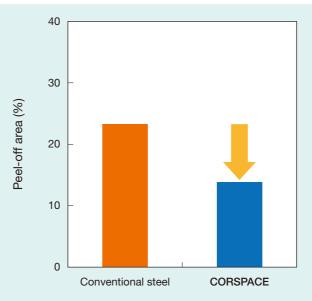
Coating film peel-off status around scratched part of horizontal exposure material

	Exposed for 1 year	Exposed for 3 years	Exposed for 10 years
Conventional steel	X		
CORSPACE	017	D 18	

Exposure test [horizontal bottom face]



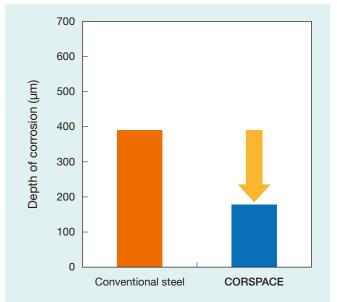
CORSPACE


Evaluation after outdoor exposure test (Hasaki-city, Ibaraki)

 (Place) • Hasaki-city, Ibaraki (Environment) • Amount of airborne salt 0.4 mdd (Public Works Research Institute method) 								
<coating< td=""><td></td><td colspan="6">Coating material Film thickness</td></coating<>		Coating material Film thickness						
specifications>		Inorganic zinc rich paint	-					
	First layer	Epoxy resin coating	120 µm					
	Second layer	Fluorine resin coating material	30 µm					
	Third layer	Fluorine resin coating material	25 µm					
		Total	175 µm					

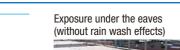
Results of 7-year exposure test

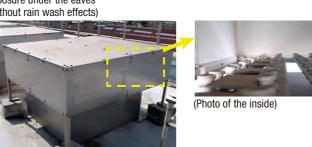
Peel-off area [7 years of exposure]



Corrosion-resistant properties (actual environment exposure test)

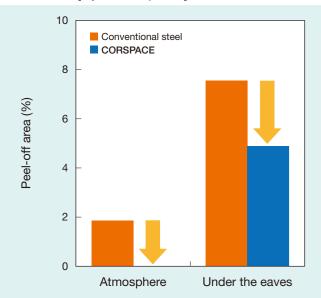
Exposure to atmosphere (with rain wash effects)

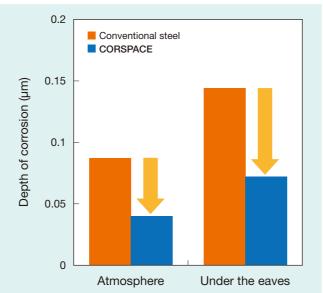

Corrosion depth in scratched coat area [7 years of exposure]



Evaluation after outdoor exposure test (Okinawa)

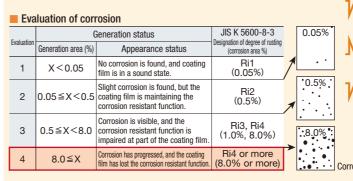
(Place) • Waterfront of Okinawa prefecture								
(Environment) • Equivalent to C5 to CX,								
the corrosion categories in the ISO12944-2								
(Test condition) • Size of the test piece: 100 x 60 x 3mm ^t								
	 Posture during exposure: Horizontal 							
Coating • C-5 specification for outer surface								
specifications>								
specifications/	Coating material	Film thickness						
specifications/	lnorganic zinc rich paint	Film thickness 75 µm						
specifications/	•							
specifications/	Inorganic zinc rich paint							
specifications/	Inorganic zinc rich paint Under coat of epoxy resin coating material	75 μm –						
specifications/	Inorganic zinc rich paint Under coat of epoxy resin coating material Under coat of epoxy resin coating material	75 μm - 120 μm						

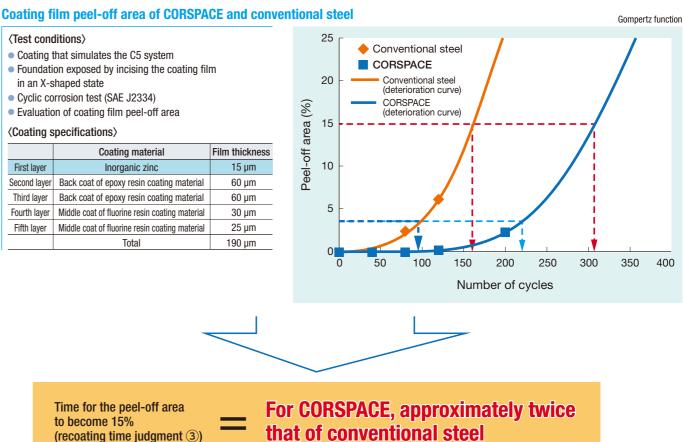



Results of 5-year exposure test

L a sua sua da	Exposure to atmosphere	e (with rain wash effects)	Exposure under the eaves (without rain wash effects)			
Legends	Conventional steel	CORSPACE	Conventional steel	CORSPACE		

Peel-off area [5 years of exposure]


Corrosion depth in scratched area [5 years of exposure]



CORSPACE

Evaluation of peel-off

Evaluation	JIS K 5600-8-5:1999 Designation of degree of flaking	Peel-off area (%)
1	0	0
2	3	1
3	4	3
4	5	15

Recoating time extension effect

(Steel Highway Bridge Anticorrosion Handbook in March 2014)

	Recoating time judgment										
				Degree of peel-off							
/			1	2	3	4					
	sion	1	(·	D							
	Degree of corrosion	2		9							
/	ree of	3		2)	3						
	Deg	4				9)					

Corrosion generation limit standard diagram

Examples of applications

Kesennuma Bay Crossing Bridge

Makiminato Elevated Bridge (Okinawa Prefecture)

Higashi-Harima Nanboku Road (Mizuashi Shintsuji No. 5 Viaduct)

Yodogawa Bridge on National Route 2 (Deck Slab Replacement)

Hanshin Expressway Sambo JCT

Unloader

Breakdown by order of CORSPACE bridges (calculated by us) as of the end of March 2024

• Ministry of Land, Infrastructure, Transport and Tourism (Regional Development Bureaus, Hokkaido Regional Development Bureau)

: 51 cases (Chubu: 20 cases, Tohoku: 15 cases, Kinki: 6 cases, Kyushu: 4 cases, Hokuriku: 3 cases, Kanto: 2 cases, Hokkaido: 1 case) Okinawa General Bureau, Cabinet Office : 2 cases

Total	· 81 cases
 Road companies 	: 4 cases
 Local governments, etc. 	: 24 cases

noud companies	. + 00000
Total	: 81 cases

As the high-strength bolts for CORSPACE, NIPPON STEEL BOLTEN CORPORATION* is offering "S10TCR"

Applicable sizes : M22 (Twist Off type)

Chemical Composition (Standard Values)

	Chemical Composition (Standard Values)										(11000/0)
	Chemical Composition Material		С	Si	Mn	Ρ	S	Cu	Ni	Mo, Sn	В
		COR-BOLT									0.0010
	Development Metals	COR-NUT	0.20-0.25	≦0.25	0.70-0.90	≦0.030	≦0.020	0.30-0.50	0.30-0.50	add	0.0013-0.0028
		COR-BT									0.0020

*Contact information: NIPPON STEEL BOLTEN CORPORATION 4-16 Midorigi 1-chome, Suminoe-ku, Osaka-shi,

Osaka Prefecture, 559-0022 JAPAN TEL: 06 (6682) 3261 FAX: 06 (6682) 3270

(mase%)

Weld material

We are offering various types of weld material that correspond to the grades of CORSPACE at NIPPON STEEL WELDING & ENGINEERING CO., LTD.*

Exclusive weld material for CORSPACE

Steel type	Coated electrode	Solid wire	Wire w	ith flux	Submerged arc weld material		
Steer type	All position	Solid Wile	All position	Fillet	*Butt	Fillet	
SS400 -CORSPACE SM400 -CORSPACE SM490 -CORSPACE SM490Y -CORSPACE SBHS400 -CORSPACE	L-55•PX	YM-26∙PX	SF-1·PX	SM-1F•PX	YF-15 × Y-D∙PX	YF-800 × Y-D∙PX	
SM520 -CORSPACE	—	YM-55C • PX	—	—	YF-15B × Y-DM3+PX	NF-820 × Y-D+PX	
SM570 -CORSPACE SBHS500 -CORSPACE	L-60 · PX	YM-60C · PX	SF-60 · PX	SM-60F · PX	YF-15B × Y-DM ∙ PX	NF-820 × Y-DM・PX	

*If you are considering welding with heat input exceeding 7 kJ/mm, please inquire in advance.

Example of performance of deposit metal of exclusive weld material for CORSPACE

	Chemical component (%)								Tensile performance		Impact performance	
Brand	С	Si	Mn	Р	S	Ni	Мо	Sn	Proof stress (MPa)	Tensile strength (MPa)	Temperature (°C)	vE (J)
L-55 · PX	0.07	0.61	1.10	0.012	0.003	—	—	Add	503	607	-30	145
L-60 · PX	0.07	0.56	1.07	0.010	0.006	0.70	0.24	Add	612	700	-20	126
YM-26 · PX	0.08	0.39	0.97	0.005	0.011	—	—	Add	483	571	0	133
YM-55C · PX	0.06	0.46	1.02	0.004	0.010	—	0.22	Add	521	606	0	140
YM-60C · PX	0.05	0.48	1.06	0.004	0.010	—	0.23	Add	554	629	-5	127
SF-1·PX	0.06	0.44	1.19	0.013	0.006	—		Add	539	612	0	136
SM-1F·PX	0.05	0.54	1.46	0.018	0.014	—	—	Add	510	597	0	64
SF-60 · PX	0.05	0.55	1.57	0.011	0.006	0.53		Add	595	665	-5	78
SM-60F · PX	0.05	0.57	1.80	0.014	0.010	—	—	Add	567	642	-5	81
YF-15 × Y-D·PX	0.07	0.45	1.54	0.016	0.006	—	—	Add	511	601	0	93
$YF-800 \times Y-D \cdot PX$	0.04	0.68	1.55	0.009	0.011	—	—	Add	415	534	0	49
YF-15B × Y-DM3 · PX	0.08	0.31	1.76	0.013	0.006	—	0.21	Add	553	648	0	108
NF-820 \times Y-D \cdot PX	0.05	0.63	1.88	0.007	0.011	—	—	Add	478	588	0	81
YF-15B × Y-DM • PX	0.08	0.31	1.70	0.013	0.005	—	0.37	Add	595	699	-20	67
NF-820 × Y-DM • PX	0.06	0.59	1.81	0.005	0.011	—	0.40	Add	564	662	-5	70

Mechanical Properties (Standard Values) Bolts

Mechanical	Properties	of Test	Pieces

Class by Mechanical	Yield strength	Tensile Strength	Elongation	Reducation of area
Property	N/mm²	N/mm²	%	%
S10TCR	900 ≦	$1000 \sim 1200$	14 ≦	

Nuts		
Class by Mechanical Property	Hardness	Guaranteed load
F10CR	20~35HRC	Same as minimum tension load df bolt

Bolt

*Contact information: NIPPON STEEL WELDING & ENGINEERING CO., LTD.

Shingu Bldg., 4-2 Toyo 2-chome, Koto-ku, Tokyo, 135-0016 JAPAN TEL: 03 (6388) 9000 FAX: 03 (6388) 9160 www.weld.nipponsteel.com/en/

Class by Mechanical	Minimum tension load kN	Llevelesse	
Property	M22	Hardness	
S10TCR	303	27~38HRC	

Washers	
Class by Mechanical Property	Hardness
F35CR	35 ~ 45HRC