

www.nipponsteel.com

NIPPON STEEL

Steel Plates for Offshore Structures

NIPPON STEEL CORPORATION

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111 Steel Plates for Offshore Structures A003en_03_202207f © 2019, 2022 NIPPON STEEL CORPORATION

NIPPON STEEL CORPORATION

Steel Plates for Offshore Structures

Jack up rig

Compliant

tower

-7

TLP

Semi-

submersible

Fixed

platform

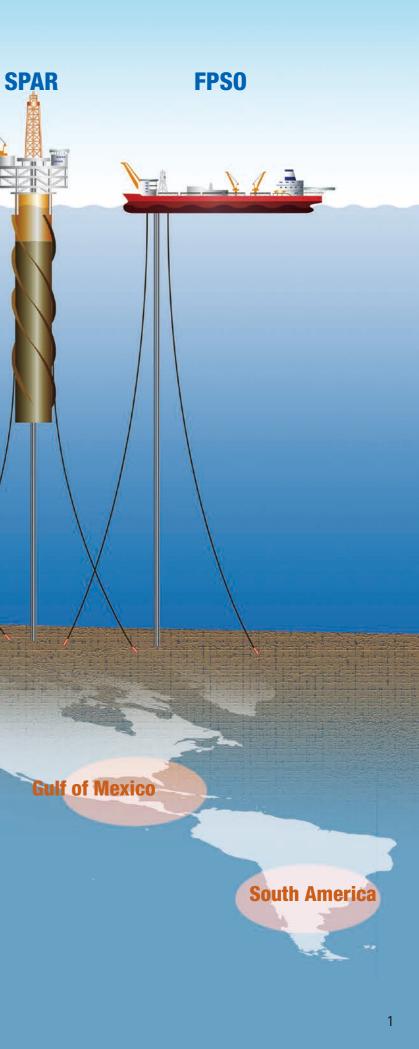
We have supplied our offshore-use steel plates all over the world.

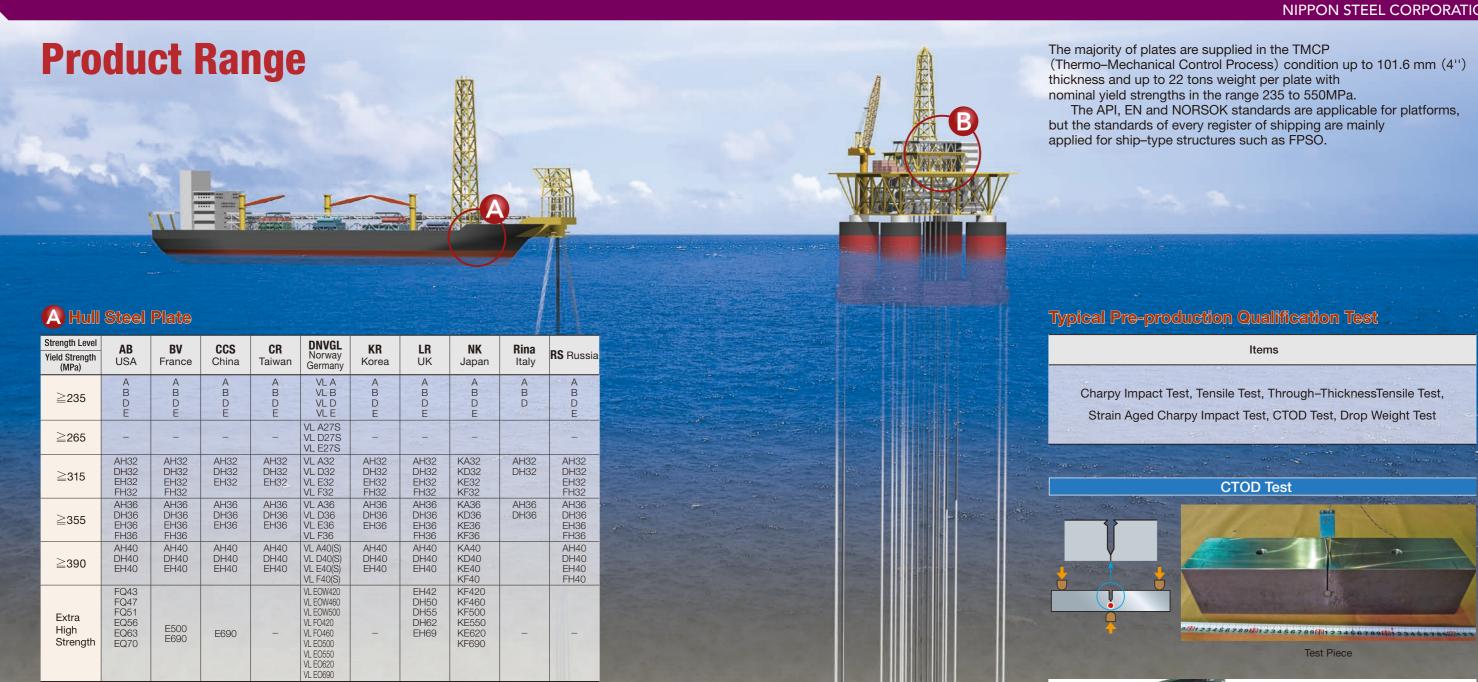
We provide a rich selection of preproduction qualification steel plates.

With nominal yield strengths in the range 345 to 690MPa.

We have a record of high quality.

No serious quality claims have been reported with our offshore-use steel plates.


We have continued to develop advanced technology.



Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by NIPPON STEEL CORPORATION with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the NIPPON STEEL CORPORATION office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication.

The names of our products and services shown in this publication are trademarks or registered trademarks of NIPPON STEEL CORPORATION, affiliated companies, or third parties granting rights to NIPPON STEEL CORPORATION or affiliated companies. Other product or service names shown may be trademarks or registered trademarks of their respective owners.

NIPPON STEEL CORPORATION

B Primary Structural Steel Plate With Preproduction Qualification

Steel Grade	Maximum Thickness			jii
Yield Strength (MPa)	(mm)	API2W	EN10225	NORSOK
355	101.6	Grade 50	S355G7+M S355G8+M S355G9+M S355G10+M	MDS-Y20 MDS-Y25
420	101.6	Grade 60	S420G1+M S420G2+M	MDS-Y30 MDS-Y35
460	101.6 (110)*	-	S460G1+M S460G2+M	MDS-Y40 MDS-Y45
500	70.0			MDS-Y50 MDS-Y55
550	76.2	Grade 80	(S550M3)	- //

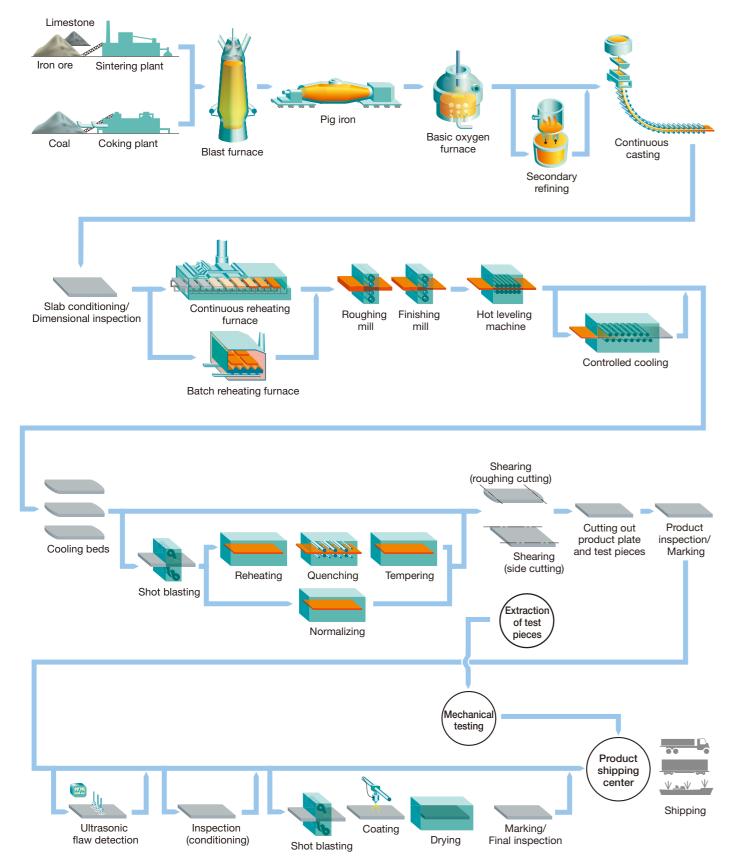
Note: * Supply Condition :Q

JP4 ACTOR.

TUT UN

51

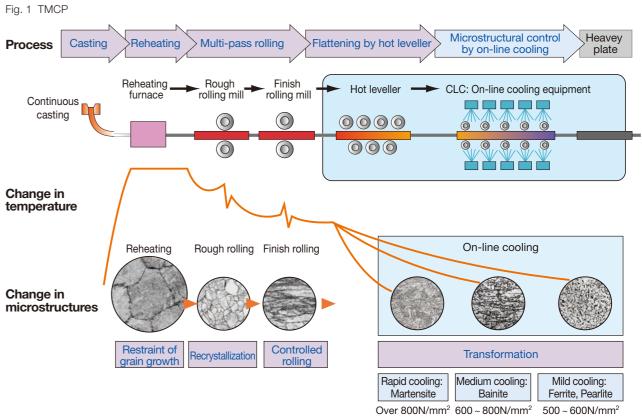
NIPPON STEEL CORPORATION


Test Piece

3 Point Bending Machine

14282

Manufacturing Process and Quality Control Points

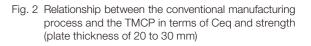

Thermo–Mechanical Control Process (TMCP)

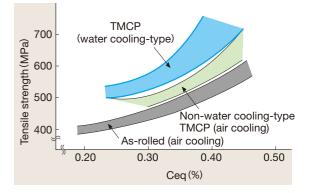
TMCP is applied in high tensile strength thick steel plates of 490MPa or greater, and achieves marked and major improvement in characteristics such as low-temperature toughness and weldability. TMCP is used in a wide variety of fields such as shipbuilding, marine structures, bridges, architecture, industrial machinery, line pipes and tanks.

1. Summary of TMCP

TMCP is a manufacturing process of steel plates based on a combination of controlled rolling and controlled cooling.

When high tensile strength steel of tensile strength ratings of 490MPa or more is manufactured by TMCP, major

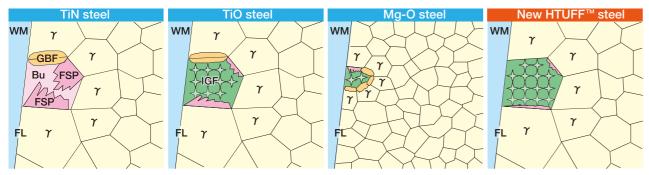



* TMCP (Thermo–Mechanical Control Process) A collective name for all methods of manufacturing steel plates with controlled rolling or controlled rolling combined with accelerated cooling

2. Characteristics of high strength TMCP steel

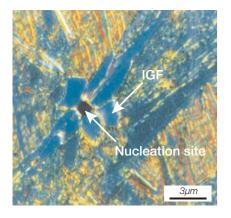
- (1) Low Ceq (carbon equivalent)
- Toughness has been improved as a result of realization of low Ceg and utilization of TMCP.
- (2) About the advantages of using high strength TMCP steel plates
- Weldability is greatly improved, and as a result, the following advantages are obtained during use
- Due to the low P_{CM} level (weld crack sensitivity composition), the preheating temperature at the time of welding can be lower than that of conventional high tensile strength steel
- The maximum hardness of the welded joints can be made lower than that of conventional high tensile strength steel
- Improving toughness of welded joints
- Less deterioration in mechanical properties of the material by linear heat

reduction in the amount of alloying elements added can be achieved, along with lower carbon levels. An outline of equipment used in TMCP is shown in Fig. 1.

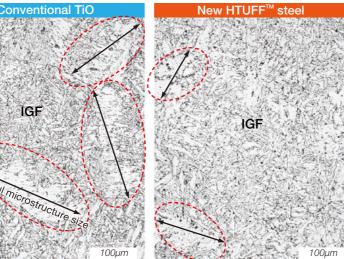


Improvement of HAZ Toughness

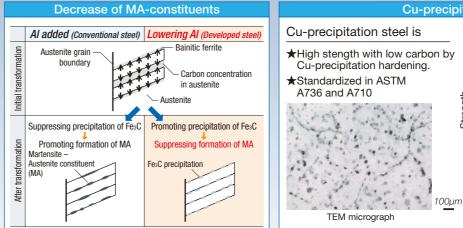
Basic concept	t	• (Concept of HTUFF [™] steel
Metallurgical factors	Measures		HTUFF™ steel
Refinement of effective grain size in HAZ (HTUFF™)	 Inhibition of austenite grain coarsening by fine particles such as TiN 	high	eft ^{il} Steel
	Utilization of intra granular ferrite (IGF) nucleated from particles such as Ti ₂ O ₃	ness	Men Hill (Mg-O Steel)
	 Utilization of both the above measures by dispersing high-temperature-stable oxide and sulfide particles 	Toughness	IGF * IGF * SEE
Decrease of MA-constituents	 Reduction in carbon content and carbon equivalent Reduction in silicon, alminium and niobium content 		Pinning (TiN Steel) * Intra Granular Ferrite
Improvement of matrix toughness	 Fixation of free nitrogen such as TiN, AIN, etc. Addition of nickel 		low Strength high


* HTUFF : \underline{H} igh HAZ \underline{T} oughness technology with \underline{F} ine microstructure imparted by \underline{F} ine particles

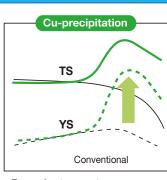
Concept of controlling microstructure



WM: Weld Metal FL: Fusion Line Y: Austenite GBF: Grain Boundary Ferrite FSP: Ferrite Side Plate IGF: Intra-granular Ferrite Bu: Upper Bainite


IGF formed in HAZ of TiO

Comparison of HAZ microstructure of TiO steel and New HTUFF[™] steel



NIPPON STEEL CORPORATION

Cu-precipitated Steel

TiN Steel

Cu-precipitation steel

Tempering temperature Relationship between tempering temperature and strengt

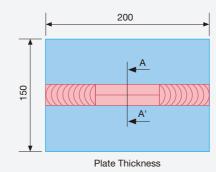
7

Primary Steel with Pre–Production Qualification

Typical Chemical Composition

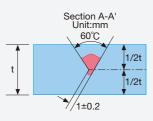
									(11125570)
Yield Strength (MPa)	Thickness (mm)	C	Si	Mn	Р	S	Others	Ceq	Рсм
≧355	101.6	0.07	0.13	1.51	0.003	0.002	Cu, Ni, Nb etc.	0.39	0.18
≧420	101.6	0.04	0.11	1.36	0.003	0.002	Cu, Ni, Nb etc.	0.42	0.19
≧460	101.6	0.04	0.10	1.41	0.003	0.002	Cu, Ni, Nb etc.	0.43	0.19
≧500	70.0	0.09	0.12	1.63	0.007	0.002	Cu, Ni, Nb etc.	0.44	0.21
≧550	76.2	0.03	0.12	1.09	0.004	0.003	Cu, Ni, Nb etc.	0.48	0.19

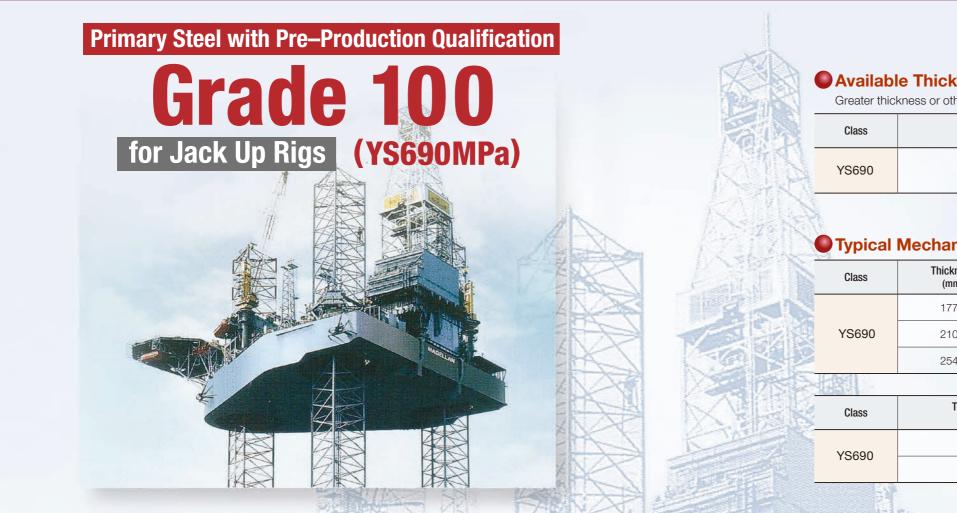
Note: Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5


Typical Mechanical Properties Tensile Test Through–Thickness Tensile Test Charpy Impact Yield Strength (MPa) Thickness Elongation (%) Yield Strength **Tensile Strength** Tensile Strength RA (%) vTrs (mm)(MPa) (MPa) (MPa) (°C) ≧355 101.6 77 395 511 37 505 -89 ≧420 101.6 505 584 32 548 79 -91 ≧460 101.6 471 31 82.1 527 510 -109 65 \geq 500 70.0 522 629 22 578 -100 ≧550 76.2 589 663 30 658 77 -117

Typical y–Groove Cracking Test Result

Yield Strength	Thickness	Welding Method	H.I Preheat Temp			Crack		
(MPa)	(mm)	welding wethou	(kJ/mm)	(°C)	Surface	Root	Section	
≧355	101.6	SMAW	1.6	24	0%	0%	0%	
≧420	101.6	SMAW	0.7	25	0%	0%	0%	
≧460	101.6	SMAW	0.7	25	0%	0%	0%	
≧500	70.0	SMAW	1.7	25	0%	0%	0%	
≧550	76.2	SMAW	0.7	25	0%	0%	0%	





Typical CTOD Test Result of Welded Joint

			CTOD Value at -10°C (mm)		
Yield Strength	Thickness	Low	Middle	High	
(MPa)	(mm)	0.7 kJ/mm FCAW	3.0~3.5 kJ/mm SAW	4.5~5.0 kJ/mm SAW	
≧355	101.6	≧0.44	≧1.33	≧0.99	
≧420	101.6	≧0.48	≧1.40	≧0.92	
≧460	101.6	≧1.23	≧1.23	≧0.99	
≧500	70.0	≧0.85	≧0.92	—	
≧550	76.2	≧0.65	≧0.81	≧0.89	

NIPPON STEEL CORPORATION

Specification

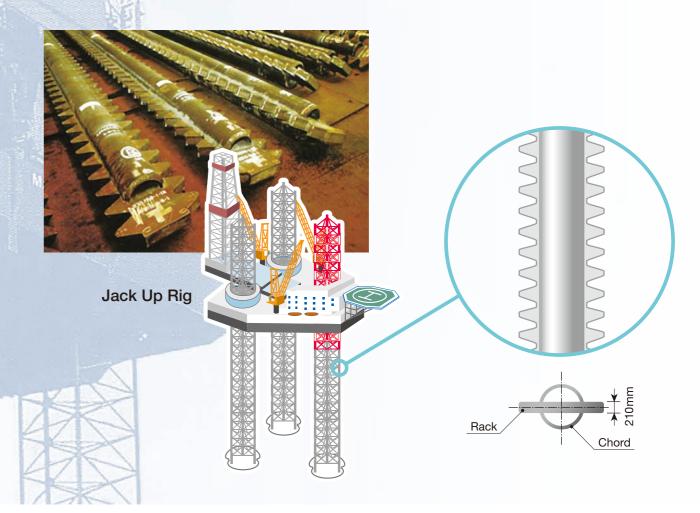
		Tens	ile Test		
Class	Yield Strength (MPa)	Tensile Strength (MPa)	Elongation (%)	Specimen	
YS690	≧690	780-930	≧16 (t ≦16mm) ≧24 (t>16mm)	JIS No.5 (GL =200mm)	
13090	5090	760-930	≧16 (t>20mm)	JIS No.4 (GL =50mm)	
	-1	Charpy	mpact Test	<u> </u>	
Class	Test temperature (°C)		sition	Average absorbed energy (J)	
YS690	-40	1/	/4t-L	≧69	
13090	-60	ر ا	/4t-L	≧69	

Typical Chemical Composition

				100 C							2 A		
Class	Thickness (mm)	C	Si	Mn	Р	S	Cu	Ni	Cr	Мо	v	В	Ceq
	177.8	0.12	0.25	1.07	0.006	0.001			Added			0.001	0.66
YS690	210.0	0.11	0.26	1.05	0.005	0.001	×	7	Added	4	1	0.001	0.83
	254.0	0.10	0.05	1.03	0.003	0.001		1	Added	12	1	0.09	0.91
							X			0.01	10 10	11/11- 10	11 10/5

Note: Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5

Available Thickness


Greater thickness or other standards within this yield strength range may be possible on request.

Class	Grade	Ship Classification	Maximum Thickness (mm)
YS690	NVE0690	DNV	254
	EQ70	ABS	254

Typical Mechanical Properties

Class	Thickness (mm)	Yield Strength (MPa)	Tensile Strength (MPa)	Elongation (%)	Specimen
	177.8	822	884	20	JIS No.4
YS690	210.0	782	866	20	5.65√S
	254.0	745	828	22	5.65√S

Class	Test temperature (°C)	Positon	Average absorbed energy (J)
YS690	-40	1/4t-L	206
13090	-60	1/4t-L	89

Note: *1 NIPPON STEEL's Standard

Welding Materials

Ctool Crodo	Welding Process *1	Production Name *2	AWS	Applicati	on	
Steel Grade	weiding Process	(Shield Gas)	Classification	Position	CVN (°C)	CTOD (°C) *3
		NB-55×Y-DS (Flux) (Wire)	A5.17 F7A8-EH14 F7P8-EH14	Flat Position Welding	-40~-60	-40
	Submerged Arc Welding (SAW)	NB-55L×Y-D	A5.23 F7A8-EG-G F7P8-EG-G	Flat FOSITION WEIGING	-40~-60	-20
		NB-55E × Y-DM3	A5.23 F8A4-EG-G	ditto (Two-run Welding)	-20~-40	-
YS305MPa		SF-3M (CO ₂)	(A5.36 E71T1-C1A4-CS1 A5.20 E71T-9C-J ^{*4}		-20~-40	-10
-YS400MPa	Flux Cored Arc Welding (FCAW)	SF-3A (Ar-CO ₂)	(A5.36 E71T1-M21A4-CS1 A5.20 E71T-9M-J *4	All Position Welding	-20~-40	-10
		SF-36E (CO ₂)	(A5.36 E81T1-C1A8-K2-H4 A5.29 E81T1-GC ^{*4}		-40~-60	-10~-20
	Covered Arc Welding (SMAW)	L-55SN	A5.5 E7016-G	All Position Welding	-40~-60	-40
	Gas Metal Arc Welding (GMAW)	YM-1N (Ar-CO ₂)	A5.28 ER80S-G	All Position Welding	-40~-60	-10
	SAW	NB-55×Y-CMS	A5.23 F8A8-EA4-A4 F8P8-EA4-A4	Flat Position Welding	-40~-60	-40
	FCAW SF-4	SF-3E (CO ₂)	(A5.36 E81T1-C1A4-CS1 A5.29 E81T1-GC ^{*4}		-20~-40	-10
YS420MPa		SF-47E (CO ₂)	(A5.36 E81T1-C1A8-Ni1-H4 A5.29 E81T1-Ni1C-J *4	All Position Welding	-40~-60	-10~-30
-YS460MPa		SF-3AM (Ar-CO ₂)	(A5.36 E81T1-M21A8-Ni1-H4 A5.29 E81T1-GC *4		-40~-60	-10~-40
	SMAW	L-60	A5.5 E8016-G	All Position Welding	-20~-40	_
	GMAW	YM-3N (Ar-CO ₂)	A5.28 ER80S-G	All Position Welding	-40~-60	-
	FCAW	SF-50E (CO ₂)	(A5.36 E91T1-C1A8-Ni2-H4 A5.29 E91T1-Ni1C-J *4	All Position Welding	-40~-60	-40
	TOAW	SF-50A (Ar-CO ₂)	(A5.36 E91T1-M21A4-K2-H4 A5.29 E91T1-GM * ⁴	Air r usition weiding	-20~-40	-10
YS500MPa	SAW	NB-250H×Y-204B	A5.23 F9A8-EG-G F9P8-EG-G	Flat Position Welding	-40~-60	-10
	SMAW	L-60LT	A5.5 E9016–G	All Position Welding	-40~-60	_
	GMAW	YM-70A (Ar-CO ₂)	A5.28 ER100S-G	All Position Welding	-20~-40	-
	FCAW	SF-70A (Ar-CO ₂)	(A5.36 E101T1-M21A4-K2-H4 A5.29 E101T1-GM * ⁴	All Position Welding	-20~-40	-20
YS550MPa	SAW	NB-55×Y-DMS	(A5.23 F9A8-EA3-G F9P8-EA3-G	Flat Position Welding (AC Only)	-20~-40	-10
	SMAW	L-60LT	A5.5 E9016–G	All Position Welding	-40~-60	_

Steel Grade	Wolding Process	Production Name	AWS	Apprication		
Sleer Graue	Welding Process	(Shield Gas)	Classification	Position	CVN (°C)	
	SAW	NB-250J×Y-80J	A5.23 F11A8-EG-M3	Flat Position Welding	-40~-60	
VSGOMDa	YS690MPa GMAW	L-80SN	A5.5 E11016-G	All Position Welding	-40~-60	
13090IVIPa		YM-80A (Ar-CO ₂)	A5.28 ER110S-G	All Position Welding	-40	
		GMAW YM-69F (Ar-CO ₂) A5.28 ER110S-		All FUSILION WEIGHING	-60	

Note: *1: Applicable polarity; SAW = AC and/or DCEP, FCAW & GMAW = DCEP, SMAW = AC or DCEP *2: NIPPON STEEL WELDING & ENGINEERING Co.,Ltd. (NSWE). *3: Information only *4: AWS A5.20 and A5.29 were replaced into A5.36 on the end of 2015.

