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Abstract
Due to progress in information technology and artificial intelligence, improvements of 

processes based on the analysis of accumulated big data are highly expected in the steel 
industry as well as in other fields. However, attainments of improvement in real processes 
require methodologies compatible with physical models based on fundamental principles 
and operational knowledge in factories. This article introduces data modeling technologies 
and their applications deploying the strength of developments in physical and statistical 
models.

1.	 Introduction
Along with the recent dramatic progress of information and arti-

ficial intelligence technology including machine learning, large-
scale database systems collecting data through the high-speed net-
work are now able to be built to produce added value from the anal-
ysis of big data. Also in the steel industry, data from control and 
production management systems have been collected and stored for 
many years, the data capacity and the storage period have greatly 
increased, and the system environment collecting and analyzing 
various information across different systems has been built. Im-
provement of quality or high productivity is expected by the effec-
tive use of these data concerning actual operations.

However, in the steel industry, various processes produce vari-
ous types of products at high productivity with strict operation re-
strictions. Since many improvements based on technological devel-
opments and accumulated operation knowledge have already been 
made, attempts for further improvement of yield and high produc-
tivity may often result in unsatisfactory results by only applying sta-
tistical analysis or machine learning.

Nippon Steel & Sumitomo Metal Corporation has physical mod-
els developed over many years based on fundamental principles and 
operation knowledge based on the experience in factories. Further 
improvements of the processes require the combination of the physi-
cal model based on physical/chemical knowledge with statistical 
analysis and machine learning, and methodologies compatible with 
operational knowledge in factories. The research and development 
departments of instrumentation and control in Nippon Steel & Sumi
tomo Metal have continuously researched and developed data mod-

eling technologies taking advantage of the strength of both physical 
model and statistical model developments. This paper introduces 
these technologies and examples.

Quality measures in steel production include indexes indicated 
by quantitative values such as temperatures determining the metal-
lurgical structure as well as product dimensions (thickness and 
width), and qualitative evaluation indexes such as acceptance judg-
ment for product surface or internal defects. First, in Chapter 2, 
technologies for quantitative measures are introduced and in Chap-
ter 3, technologies of quality improvement for qualitative measures 
are introduced.

2.	 Process Control with Data Modeling Technology 
For quantitative quality measures indicated by values such as di-

mensions (thickness and width) of steel products and temperatures, 
predictions and process control by physical models based on physi-
cal/chemical principles have been widely implemented. However, 
application of physical models based on theories or experiments to 
real processes requires adjustments of the models to fit the actual 
equipment or process, and error adjustments of the physical and 
control models by regression as alternatives of the physical models 
have been widely used.

While physical models are highly persuasive with clear correla-
tion of their configuration and formula with real processes, it is dif-
ficult to describe all phenomena and the accuracy may be unsatis-
factory. In contrast, while it is easier for statistical models (including 
machine learning models) based on the real process data to obtain 
high accuracy, their correlation with the processes is not always 
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clear (less descriptive). In addition, the problem is that their accura-
cy is not reliable for new operating conditions or products. 

Therefore, technology of gray box modeling has been developed 
to ensure descriptiveness for the process and improve the accuracy 
by combining physical and statistical models. This gray box was 
named by mixing both the black box meaning low descriptiveness 
of the statistical model and the white box meaning high descriptive-
ness of the physical model.

Various types of methods are considered for gray box modeling. 
The popular methods used in actual operations are as follows:

First, as shown in Fig. 1 (a), error of the physical model is ad-
justed with the statistical model to improve the prediction accuracy 
of the model. In this model, using the recorded data of the physical 
model prediction errors, the statistical model predicting the errors is 
created.

Then, Fig. 1 (b) shows the type of method in which the statistical 
model sets the parameters of the physical model. This method is 
suitable for the case in which qualitative characteristics of the proc
ess are well described by the physical model but it is difficult to de-
termine the parameters in a real situation. Parameters of the physical 
model are estimated from the operation records with some method 
and the statistical model predicting the parameters is created.

Although Fig. 1 (c) shows the type of method in which only the 
statistical model is used in actual operation, improving descriptive-
ness of the statistical model by correlating with physical characteris-
tics of the process and implementing physical knowledge in advance 
in building the statistical model are enabled.

Examples of the three model types above are introduced in the 

following sections. 
2.1	Physical model adjustment technology with statistical model 

First, we introduce an example of improving the accuracy for 
prediction of the steel pipe shrinkage factor in the medium diameter 
seamless mill at Wakayama Works, Nippon Steel & Sumitomo Met-
al to improve the prediction accuracy of the model by adjusting the 
physical model error with the statistical model. 1)

The medium diameter seamless mill was a state-of-the-art mill 
at the time of installation in 1997 under the concept of a simple and 
compact mill. As shown in Fig. 2, the reheating furnace that has 
been indispensable for conventional mill configuration was elimi-
nated, and a very compact mill was achieved by placing the three-
roll sizer that also has the extractor function immediately after the 
mandrel mill. However, problems that were not found in the con-
ventional mill have appeared. The problem with the largest effect 
was fluctuation of the sizer finish temperature. To solve this prob-
lem, the development of a new control technology was started. 

Figure 3 shows the system configuration of the developed outer 
diameter control system. The shrinkage factor of steel pipe depends 
on the average temperature of the steel pipe at the sizer delivery, but 
the inside temperature of the steel pipe cannot be measured. There-
fore, predictive calculation is performed using the temperature sim-
ulator. The temperature simulator calculates the prediction of the 
temperature distribution inside the steel pipe using the records of the 
process and the transfer time from the heating furnace extraction to 
the sizer rolling as input. Inevitably, there are model prediction er-
rors. Also, since the inside temperature of the steel pipe cannot be 
measured, adjustment to the predicted value of the temperature sim-
ulator is added using the actual shrinking factor as the valid value. 
In this case, the adjustment table for each stratum is maintained 
based on the analysis result of the error factor. 

Figure 4 shows the concept of case-based modeling that models 
a plant based on the past experience, recorded values, and input/out-
put relations. From the past cases stored in the database, only simi-
lar cases which are in the vicinity of the current operating conditions 
are selected, and model output is created by local modeling that 
minimizes the prediction error of the data in the vicinity. In this ap-
plication, predictions of the conventional control model (tempera-
ture simulator) are used and only the remaining model errors are 
predicted by the case-based modeling technology.

Fig. 1   Various configurations of gray box modeling

Fig. 2   Plant configuration of Wakayama Works seamless pipe mill

Fig. 3   System configuration of diameter control
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Figure 5 shows the simulation verification result for investigat-
ing the effect of neighborhood setting on the prediction accuracy. 
Figure 5 (a) shows the prediction accuracy of the sole physical mod-
el without adjustment. Figure 5 (b) shows the accuracy when it is as-
sumed that errors of the physical model are predicted using the con-
cept of the case-based modeling to automatically generate the ad-
justment table values. This indicates that the prediction accuracy is 
improved by adding automatic adjustment compared to the conven-
tional accuracy. When the area is set wider, the histogram curve be-
comes gradual (Fig. 5 (c)). When the area is set narrower, the curve 
becomes steep (Fig. 5 (d)). Even though the narrow area improves 
the prediction accuracy, it requires care for adverse effects are easily 

caused by outliers included in the accumulated data. 
2.2	Setting parameters of physical model with statistical model

As an example of the second type (Fig. 1 (b)) of gray box model-
ing, development details of the converter blowing control model 2, 3) 
are introduced. 

The converter blowing control model instructs necessary blow-
ing oxygen volume and cooling material input volume to achieve 
the specified target value of the molten steel temperature/carbon 
concentration measurement value at the end-point in blowing (end 
of the process) using the molten steel temperature and the carbon 
concentration measurement value obtained by sublance measure-
ment as the start point during blowing, and recursively estimates 
molten steel carbon concentrations and temperatures after the sub-
lance measurement. Usually, it consists of the oxygen balance equa-
tion (for estimation of carbon concentration) and the heat balance 
equation (for estimation of oxygen). Here, the oxygen balance equa-
tion is the target for review.

The oxygen balance equation is obtained by integrating the rela-
tionship between the decarburizing oxygen efficiency (η) and the 
molten steel carbon content ([C]) with respect to the blown oxygen 
volume (O2) and [C]. As shown in Fig. 6, towards the end of blow-
ing, for which this model is applicable to control, η reduces as [C] 
becomes smaller along with the progress of blowing. This is because 
the decarburization reaction ([C] + 1/2O2 → CO ↑) is changed from 
oxygen supply rate-limiting to carbon supply rate-limiting.

[C] when η starts reduction is called critical carbon concentra-
tion (Ccr). It is the value characterizing the decarburizing behavior at 
the end phase of blowing as well as the maximum decarburizing ox-
ygen efficiency (k2) during blowing. Ccr and k2 vary under the effect 
of operating conditions including upper base blow gas conditions 
and slag volume. Therefore, it is important to evaluate Ccr and k2 ac-
curately in order to obtain the correct oxygen balance equation. 

Next, the specific formula of the oxygen balance equation is de-
rived. The relationship between η and [C] is expressed by Equation 
(1) using Ccr and k2.

	 f C   = k2 ×   1 − exp  −    		  (1)

The oxygen balance equation of Equation (2) is obtained by in-
tegrating Equation (1).

        ΔO2 =   CSL − C   + ln    

						      (2)
In the frame of the gray box modeling, this oxygen balance 

equation corresponds to the physical model. Its parameters, Ccr and 
k2, are estimated by the statistical model. 

In order to build the statistical model, the actual values of Ccr 

C − CL 

Ccr 

Ccr
k2

1
Ccr

1 − exp − CSL − CL   / Ccr 

1 − exp − C − CL   / Ccr 

Fig. 4   Case-based modeling

Fig. 5	 Relationship between setting of neighborhood and prediction er-
rors

Fig. 6	 Relation between O2 efficiency for decarburization and carbon 
content
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and k2 are required. To this end, it is necessary to measure [C] dur-
ing blowing in a short cycle. Even though it may be possible at the 
laboratory level, it is not realistic to obtain the number of samples 
required to build the statistical model with this method. In this way, 
using the operation record data (blowing oxygen volume, and blow-
ing and end-point carbon concentration) of the actual plant, Ccr and 
k2 are estimated (identified) by the mathematical programming prob-
lem described later. Assuming these estimates as the actual values, 
the statistical model is built. This mathematical programming prob-
lem is a non-linear optimizing problem consisting of the oxygen 
balance equation as the restrictive condition and the objective func-
tion minimizing the deviation of Ccr from the standard value ob-
tained from conventional knowledge, etc. and the deviation of k2 
from the theoretical value. Solving this problem by sequential qua-
dratic programming, reasonable values of Ccr and k2 are obtained 
satisfying the oxygen balance. 

Online calculation for the actual plant predicts Ccr and k2 using 
the prediction equation obtained in advance, and, by applying these 
predicted values to the oxygen balance equation, sequentially calcu-
lates the necessary blowing oxygen volume and molten steel carbon 
concentration. 

The predication equation of Ccr and k2 is built by the multiple re-
gression model by setting Ccr and k2 as the response variables that 
are identified by the mathematical programming with the recorded 
data of the past operation of the actual equipment and setting vari-
ous operational conditions as predictor variables. Table 1 shows the 
estimated model parameters of the Ccr prediction formula and F val-
ues of operation factors obtained from the analysis of variance (the 
larger the F value, the larger the effect of the operation factor on 
Ccr). Table 1 shows that the F value of quicklime input is larger than 
other operation factors, that the sign of the parameter is positive, 
and that Ccr increases when quicklime input (≈ slag volume) is large. 
The result conformed to the knowledge of the conventional study (if 
slag volume increases, the decarburizing oxygen efficiency at the 
end of blowing is lower).

Figure 7 shows the relationship between the recorded values 
and estimated values of the end-point carbon concentration obtained 
from the oxygen balance equation applying the predicted values of 
Ccr and k2. The end-point carbon concentration was well estimated 
in a relatively wide range from low to medium carbon.

The converter blowing control model introduced in this paper is 

being deployed to other steel works in Nippon Steel & Sumitomo 
Metal. It has been confirmed that the prediction accuracy improves 
when the oxygen remaining in the furnace obtained from the ex-
haust gas information is used for predictor variables. Further im-
provement of accuracy can be expected using machine learning, 
which has been remarkably developed in recent years, for building 
of the statistical model (prediction equations of Ccr and k2). 
2.3	Statistical model exploiting physical knowledge

There are many processes that use the control model created 
with regression, etc. from actual data because an appropriate physi-
cal model is not available, or even if it is available, it is difficult to 
adjust parameters for the real process. In order to improve the con-
trol accuracy and to reduce the maintenance load for such processes, 
the automatic building method of control models was developed. 4)

Many statistical models used in actual operation use multiple 
models stratified by production conditions to meet non-linearity of 
the process. However, as building models including the stratum con-
ditions depend on human experience and trial and error, the work 
load for model adjustment is high and the problem is deterioration 
of accuracy due to diversification of product types and other rea-
sons. To this end, the method for building regression models, which 
automatically creates appropriate stratification using the operation 

Fig. 7   Accuracy of carbon content estimation

Table 1   Results of regression of Ccr

No Operational conditions Parameters t value Pr (> | t | ) Df Sum Sq Mean Sq F value Pr (>F)
1 (Intercept) −0.1638 −1.3 1.88E-01 – – – – –
2 Hot metal [Si] −0.1250 −2.6 0.010338 1   0.2777 0.2777 53.7 3.09E-13 ***
3 Hot metal [Ti] 0.1521 2.9 3.90E-03 1   0.033 0.033 6.4 1.16E-02 *
4 Hot metal temp 0.0002 4.0 6.58E-05 1   0.0371 0.0371 7.2 7.42E-03 **
5 Hot metal weight −0.0007 −4.0 5.85E-05 1   0.2002 0.2002 38.7 5.66E-10 ***
6 Lime 0.0067 9.5 2.00E-16 1   1.6034 1.6034 310.0 2.00E-16 ***
7 Scale 0.0004 2.4 0.016748 1   0.0639 0.0639 12.4 4.46E-04 ***
8 Sub material 1 −0.0004 −2.6 0.008235 1   0.1118 0.1118 21.6 3.49E-06 ***
9 Sub material 2 −0.0038 −2.2 2.46E-02 1   0.0311 0.0311 6.0 1.43E-02 *
10 Oxygen gas flow rate 0.0000 10.8 2.00E-16 1   0.6456 0.6456 124.8 2.00E-16 ***
11 Bottom gas flow rate −0.0018 −2.8 5.11E-03 1   0.0325 0.0325 6.3 1.23E-02 *

Residuals          2710 14.0163 0.0052
*: Pr < 0.05,  **: Pr < 0.01,  ***: Pr < 0.001
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data in the past, was developed.
The model equation of the developed method is shown below:

	 ŷ = ∑  (wi0 + wi1 u1 + wi2 u2 + 
…

 + wip up) Φi (u
→)

The input variable space consisting of operation factor u→ = (u1, 
… up) is divided into the M number of local areas. In each local area, 
the relationship between quality y and operation u→ is modeled by a 
linear equation. The full model is expressed as the sum of each local 
linear model ŷi with weight of the non-linear weight function Φi (u

→). 
Φi (u

→) indicates the contribution of local linear model ŷi . It takes the 
value of 1 in the area where ŷi is dominant, and takes the value close 
to 0 in the area where there is almost no effect. For any u→, ∑   Φi (u

→) 
= 1 is satisfied. Figure 8 is an example of weight functions that di-
vide the space of two variables into 3 areas. Using such smooth 
weight functions at the area boundary, the full model also has con-
tinuous and smooth characteristics. As shown in Fig. 9, division of 
the input variable space into local areas is performed until a neces-
sary model accuracy is obtained, starting from the entire space and 
sequentially selecting the division with the highest accuracy among 
methods dividing any area into two.

The selection of the division of the areas can be made among di-
vision candidate points dividing the area evenly or dividing the 
number of data in the area evenly. The division candidate points can 
also be provided from the preliminary physical knowledge or opera-
tion standard. The latter builds the model incorporated with prelimi-
nary knowledge and improves descriptiveness of the model.

The proposed method was applied to the width variation predic-
tion model in finish rolling of the hot rolling process (Fig. 10). The 
predicted value of width variation should be reflected to the target 
width at the rough rolling delivery. However, because the finish roll-
ing condition is uncertain at the time of extraction from the reheat-
ing furnace when the rough rolling condition is determined, it was 
difficult to apply the physical model. Therefore, the multiple regres-
sion models (three strata for materials) have been conventionally 
used. As a result of the application of the developed method, the 
model consisting of six local areas (M = 6) was automatically built 
and the width variation prediction accuracy improved by 8% (Table 
2). 

This method has been applied to the actual plant in the process 
reported, and achieved improvement of the control accuracy and re-
duction of the maintenance load. In addition, this technology can be 
widely applied to other processes, and application studies and appli-
cations to actual plants are in progress.

3.	 Optimization of Production Conditions by Statis-
tical Approach 
If the production quality is indicated by qualitative information 

such as “accepted” or “rejected,” a model indicating the relationship 
between the quality and the numerous numbers of operating condi-
tions needs to be built first, and then it is necessary to determine the 
operating conditions optimizing quality conditions. 

In addition, since probabilistic phenomena contribute greatly to 
quality in most cases, only the physical principles are insufficient 
for thorough description, and a statistical approach is necessary.
3.1	Quality improvement with PCA-LDA and DDQI

As a quality improvement action of the internal effect of bar and 
rod special steel, there is an example where the relationship between 
the qualitative quality information and the operating conditions was 
modeled with the principal component analysis-linear discriminant 
analysis (PCA-LDA) and the operating conditions were optimized 
with data-driven quality improvement (DDQI). 5, 6)

In PCA-LDA, first, operation condition data X ∈ R
 N×P are com-

pressed to R number of principal component score TR = XVR (∈ R
 N ×R) 

with principal component analysis, PCA (N is number of data and P 
is number of operating conditions). VR ∈ R

 P×R is called the loading 
matrix and is obtained by the singular value decomposition of X. 
Then, using linear discriminant analysis LDA in the space of the 
principal component score, discriminant axis J ∈ R

 N×1 that discrimi-

M

i=1 ˆ
ŷi

M
i=1

Fig. 8   Example of weight function

Fig. 9   Partitioning of input variable space

Fig. 10   Hot rolling process

Table 2   Comparison of model errors

Estimation error Std. dev.
Conventional model 1.000

Proposed model 0.920
Values are rescaled
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nates two classes of acceptance and rejection to the optimum degree 
is obtained.

	 J = TR KPCA = XVR KPCA = XKLDA

Where, KPCA ∈ R
 R×1 is the vector indicating the discriminant axis for 

principal component score TR, and converting it to the space of orig-
inal operating condition data X gives discriminant coefficient KLDA = 
VR KPCA (∈ R

 P×1). 
The analyzed variables of operating conditions were 40 variables 

from secondary refining to blooming. From the data of 532 accepted 
samples and 208 rejected samples, the quality discriminant model 
was created by PCA-LDA with six principal components. As shown 
in Fig. 11, accepted samples and rejected samples were almost sepa-
rated. The effect of each operating condition on quality can be cal-
culated from discriminant coefficient KLDA of LDA (Fig. 12). How-
ever, some operating conditions may not be independent of each 
other or some may be spuriously correlated with quality. It is neces-
sary to pay attention to those with relatively large influence coeffi-
cients, make judgment to focus on those consistent with physical 
knowledge and operation knowledge, and, finally, to verify with 
tests in the laboratory room or with the actual plant.

Furthermore, it is possible to construct a quality model (quality 
model quantifying the qualitative quality) Y = TR KPCR (Y ∈ R

 N×Q) (Q 
is the number of quality variables) with principal component regres-
sion (PCR), which is essentially equivalent to this discriminant 
model, and obtain the operating conditions that improve yield with 
DDQI. Although the operating conditions to be obtained should 
achieve quality equivalent to the target acceptance rate as desired 
quality, the operating conditions cannot be uniquely determined 
since the number Q of the quality variables is less than the number 
R of the principal component in most cases. To this end, the qua-
dratic form of the evaluation function on operating conditions is 
provided to determine the operating conditions by the optimizing 
problem. In this case, the feasible range of operating conditions is 
set to the restrictive condition and the easiness of changing each op-
erating condition is incorporated in the weight of the evaluation 

function.
Table 3 shows partial results of estimated operating conditions 

using DDQI for the analysis example above, considering easiness of 
operating condition change, cost, etc. It shows the estimated value 
of operating conditions (S-1, S-5, B-1) that give an improved accep-
tance rate by 10% and 20% compared to the base condition. Since 
the confirmation test in the actual plant also gives the improved re-
sults generally conforming to the estimation results in Table 3, va-
lidity and effectiveness of this method were then confirmed.
3.2	Quality improvement by general linear model

The example in the previous section describes the binary of ac-
ceptance judgment as the linear discriminant model. There is anoth-
er example that uses the generalized linear model (GLM) as a meth-
od to model a more general quality index. 7, 8) GLM models predic-
tion ŷ of response variable y using reversible and differentiable link 
function ℓ of linear predictor S that is a linear equation of predictor 
variables xi , and enables analysis conforming to the probability dis-
tribution of actual quality data.

	 S = c0 + ∑ ci xi ,  ŷ = ℓ (S)

Link function ℓ is set according to the target quality data. Table 
4 shows examples of effective GLM for typical quality analysis of 
steel products. For continued values such as thickness, multiple re-
gression with ℓ as the identity function may be used. For a coeffi-
cient value such as the number of defects, Poisson regression with ℓ 
as the exponential function may be used. For a ratio such as the ac-
ceptance rate, logistics regression with ℓ as the logistic function may 
be used. 

To determine the optimal operating conditions for the product 
quality using GLM, linear predictor S is decomposed into the sum 
of S1 consisting of controllable variables and S2 consisting of non-
controllable exogeneous variables. 

	 S1 = c0 + ∑ ci xi ,  S2 = ∑ ci xi			   (3)

To obtain the operating conditions that minimize the number of 
defects or reject rate, the operation condition at the point where S1 is 
minimal within the variation range of the recorded data of controlla-
ble variables should be the optimal value. Quality (= S) for the opti-
mal operating condition is estimated by substituting S2 with the av-
erage of the recorded data. 

I

i=1

J

i=1

I

i=J+1

Fig. 12   Examples of influence coefficients for quality

Table 3   Recommended points to improve the quality

Factors
Yield

Base 10% up 20% up
S-1 3.6 5.0 6.6
S-5 2.9 4.2 5.5
B-1 87 89 92

Fig. 11   A result of linear discriminant analysis

Table 4   Effective GLMs in analysis of qualities of steel products

Quality
Accuracy of 
sheet gauge

Number of 
defects

Acceptance ratio

Sort of data Continuous Count Ratio
Regression Normal Poisson Logistic

Distribution of 
the objective

Normal Poisson Binary

Link function ℓ S exp (S) [1 + exp (−S)]−1
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For a steel product type, logistic regression of the flaw rate of 
each product lot was performed using the operating conditions from 
continuous casting to blooming.

Figure 13 shows the relationship between the value of linear 
predictor and the flaw rate. Matching of the data plot (●) used for 
regression with the link function (logistic function) was good. Fig-
ure 14 is the plot of the relation of S1 and S2 in Equation (3). From 
the minimum value of S1 (−2.0) within the variation range of the re-
corded data of controllable variables and the average value (−1.3) of 
recorded data of S2, the quality for the optimal operating condition 
was estimated to be S = −3.3. Changing the conditions that greatly 
give influence on the regression accuracy toward improvement of 
the quality based on the optimal operating condition estimated in 
this method, improvement of the flaw rate was confirmed as shown 
by the white circles (○) in Fig. 13 and Fig. 14. 

4.	 Conclusions
The actions of process control and quality improvement exploit-

ing data in the steel production process were introduced. These are a 
part of the actions performed at Nippon Steel & Sumitomo Metal. 
According to each process characteristic, accuracy of the physical 
model or operational knowledge in factories, various technology de-
velopments and improvements have been implemented. 

The data collection and storage systems from the production 

management systems and the process control systems have been 
continuously expanded and further use of data is expected. The arti-
ficial intelligence technology including machine learning continues 
to be developed. We continue to make efforts for improvement of 
the operation by incorporating and combining such latest technolo-
gies with the process and operational knowledge.
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Fig. 13   Result of analysis using GLM

Fig. 14   Derivation of the optimal operational point
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