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Abstract
Crystal plasticity analyses using the fast Fourier transform (FFT) numerical scheme are 

now receiving much attention with their computer resource advantages over other numeri-
cal methods such as finite element since this method does not require a large matrix solution 
which obviously takes computational time. In this research, the crystal plasticity using FFT 
is introduced and then its application to a transformation plasticity analysis is conducted. In 
addition to the transformation plasticity analysis, FFT is used to calculate the texture devel-
opment formed by a plane strain compression in an fcc metal and the results are discussed.

1. Introduction
Numerical simulations in the steel research field involve several 

methodologies covering both microscopic and macroscopic scales. 
The microscopic steel mechanical-metallurgical phenomena have 
been approached by, for example, first-principles calculations 1) or 
molecular dynamics 2) while the macroscopic approach has been 
made by the boundary element method (BEM) 3) or finite element 
method (FEM) 4). The former methods calculate directly individual 
atoms whereas the latter methods calculate a material deformation 
based on the framework of continuum mechanics. Bridging these 
two different scale levels, recently slip deformation in a single crys-
tal is modelled and then extended to the numerical model consider-
ing polycrystalline aggregates realizing mesoscopic scale calcula-
tions called crystal plasticity. 5, 6) Crystal plasticity can be numerically 
solved by FEM but the major problem involved in applying this 
method to crystal plasticity is that it requires numerous computa-
tional resources and thus only a limited number of crystal aggre-
gates, which is sometimes not enough to describe the entire behav-
ior of the mechanistic nature of polycrystals, is employed to avoid 
the computation time.

Alternatively, Moulinec and Suquet have proposed the fast Fou-
rier transform (FFT) numerical scheme to apply elasto-plastic me-
chanical problems allowing precise computation with limited com-
puter resources. 7) Although only a periodic boundary condition can 
be adopted in FFT computation, this method allows a fast computa-
tion using limited memory space as the most time-consuming matrix 
computation. In addition, Lebensohn attempted to extend the FFT 

numerical framework to the crystal plasticity analyses, revealing its 
efficiency. 8)

Thus, in this study, analyses using crystal plasticity fast Fourier 
transform (CPFFT) are conducted to solve the two complicated phe-
nomena, namely transformation plasticity and texture development 
by deformation, and the calculated results are discussed.

2. Crystal Plasticity Formulation by Fast Fourier 
Transform
Under periodic boundary conditions, displacement at local posi-

tion x in a representative volume element (RVE) is divided into the 
average part and the fluctuation part such that

   u(x) = u'(x) + ε̄x,    (1)
where, u'(x) is a periodic fluctuation displacement. Using this, strain 
is obtained as:

   ε (u(x)) = ε (u'(x)) + ε̄.    (2)
As u'(x) is the fluctuation term, its volume average (hereafter 

represented by < >) in an RVE is null, i.e. < ε(u'(x)) > = 0.
The thermo-elasto-plastic constitutive equation considering 

phase transformation can be written as follows in a rate form:
   σ̇ (x) = C(x) : ε̇  e(x) = C(x) : (ε̇(x) − ε̇  p(x) − ε̇  th(x) − ε̇  m(x)), (3)

where, C(x) is an elastic tensor in x. ε e, ε, ε p, ε th and ε m are respec-
tively elastic strain, total strain, plastic strain, thermal strain, and 
transformation strain. Using polarization tensor τ, Eq. (3) can be re-
written as:

   σ̇ (x) = C(x) : ε̇(x) + τ̇ p(x) + τ̇ thm(x),   (4)
where
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   τ̇ p(x) ≡ −C(x) : ε̇  p(x) and  τ̇ thm(x) ≡ −C(x) : (ε̇  th(x) + ε̇  m(x)).(5)
Let the elastic tensor C 0 in a reference medium be substituted 

with the local elastic tensor in Eq. (4), and the following is obtained:
   σ̇ (x) = C 0: ε̇(x) + (C(x) − C 0) : ε̇(x) + τ̇ p(x) + τ̇ thm(x)
           = C 0: ε̇(x) + τ̇(x)
           ∀x ∈V, ∂σ̇/∂x = 0    ∀x∈V, u̇'#, σ̇ ∙ n − #,  (6)

where, τ̇(x) is a polarization tensor derived from the heterogeneity 
in the RVE. Equation (6) in the Fourier space can be written as:

   σ̂̇ (ξ) = iC 0: (u̇̂'(ξ) ⊗ ξ) + τ̂̇(ξ),   iσ̂̇ (ξ) ∙ ξ = 0,  (7)
where, ξ is frequency and non-Italic i is an imaginary number. By 
eliminating σ̇̂ from Eq. (7), the following is obtained:

   u̇̂'(ξ) = i—
2

 (N0 ⊗ ξ + ξ ⊗ N0) τ̇̂(ξ),   (8)

with
   N0(ξ) = K0(ξ)−1, K0(ξ) = C 0: (ξ ⊗ ξ),   (9)

   ε̇̂(ξ) = i—
2  (ξ ⊗ u̇̂'(ξ) + u̇̂'(ξ) ⊗ ξ) = −Γ̂ 0(ξ) : τ̇̂(ξ),  (10)

   Γ̂ 0(ξ) = 1—4  (Nli
0 ξj ξk + Nki

0 ξj ξl + Nlj
0 ξi ξk + Nkj

0 ξi ξl).  (11)

Γ̂ 0 is a periodic green’s operator. The strain rate distribution in a 
heterogeneous medium can be obtained by taking the inverse Fouri-
er transformation of Eq. (10).

An iterative approach is taken to numerically solve the above 
equations (strain rate and stress rate), such that:

Initialization: ε̇0 = ε̇ n(x), ∀x ∈V
Iteration: (n + 1): ε̇ n(x) and σ̇ n(x) are known
(a) σ̂̇ n = FFT(σ̇ n)
(b) Check convergence

 en = |√ < ||div(σ̇ n )||2 > − √ < ||div(σ̇ n−1)||2 > |
  = |√ < ||ξ ∙ σ̂̇ n (ξ)||2 > − √ < ||ξ ∙ σ̂̇ n−1 (ξ)||2 > | < ϵ
and
 en = √ < ||div(σ̇ n )||2 > = √ < ||ξ ∙ σ̇̂ n(ξ)||2 > < ϵ
if no macroscopic stress is imposed

 en = √ < ||div(σ̇ n)||2 >—
√ ||< σ̇ n >||2  = √ < ||ξ ∙ σ̇̂ n(ξ)||2 >—

|| σ̂̇ n(0)||
 < ϵ   otherwise

(c) ε̇̂  n+1(ξ) = ε̇̂  n(ξ) − Γ̂ 0(ξ): σ̂̇ n(ξ)   ∀ξ ≠ 0   and   ε̇̂  n+1(0) = ε̄̇

(d) ε̇  n+1 = FFT  −1(ε̇̂  n+1)

(e) σ̇ n+1(x) = g(ε̇  n+1(x))     ∀x ∈V,
where, g is a constitutive relation.

Then, plastic strain rate ε̇  p is modelled below by the crystal plas-
ticity framework. Plastic strain of a crystalline metal derives from 
deformations in the slip directions on the slip surfaces. This slip sur-
face and the slip direction are mostly determined by the crystal 
structure, and this combination is called the slip system. Twelve slip 
systems are present in fcc metal and 48 main slip systems are pres-
ent in bcc metal. The following uses 12 slip systems of {111}<110>, 
which is a representative slip system of the fcc metal. Let the slip 
rate in the α slip system be written as γ̇ α, and the plastic strain rate 
can be expressed as the sum of slip deformation in all slip systems 
such that:

   ε̇  p = ∑
α    

pα γ̇ α,     (12)

where, pα is the Schmid tensor in the α slip system, which takes the 
following form using slip direction vector sα and vector mα normal 
to the slip surface:

   pα = 1—2  (sα ⊗ mα + mα ⊗ sα).    (13)

Resolved shear stress applied to the slip surface can be calculat-
ed from the stress tensor by Schmid’s law. When this resolved shear 
stress exceeds the elastic limit, plastic deformation takes place. This 
elastic limit is called Critical Resolved Shear Stress (CRSS), which 
is expressed as gα as follows, and is obtained as a tensor product of 
the Schmid tensor and stress tensor, such that:

   | τ α | = | pα : σ | = gα.    (14)
Considering the symmetry and the incompressibility of the plas-

tic strain rate, the degree of freedom of the plastic strain rate is five 
whereas the fcc crystal has 12 slip systems. In this case, the solution 
of the slip rates on each slip system in order to obtain the plastic 
strain rate ε̇  p cannot be uniquely obtained because of the singularity. 
To avoid the problem, application of the viscoplastic-type constitu-
tive equation (all slip systems are active) is widely used. 9–12)

In contrast, the strain rate independent model has been devel-
oped by Hutchinson, 9) which limits the maximum number of slip 
systems that can simultaneously be active. This model allows the 
non-singular solution as described below. Let the shear force applied 
to the active slip surface be written as:

   τ̇ α = sgn (τ α) ġα,     (15)
and by assuming the small deformation theory, the following equa-
tion is satisfied:

   σ̇ : pα = ∑
β    

hαβ γ̇ β.    (16)

Work hardening is a consequence of the pile up of slip deforma-
tion on each slip system, such that:

   ġα = ∑
β    

hαβ | γ̇ β |,     (17)

where, hαβ is a work hardening parameter. Here, a simple model that 
describes the work hardening behavior can be written using parame-
ter H0, initial yield shear stress τ0, and saturation stress τs,

 13) such 
that:

   hαα = h = H0 sech2 [  H0Σβ γ
 β

—τs− τ0
 ]   (18)

   hαβ = qh + (1 − q) hδαβ ,    (19)
where, q decides the ratio of self-hardening and latent-hardening, 
whose value varies from 1.0 to 1.4.

By eliminating plastic strain from the constitutive equation using 
Eq. (16), the following is obtained:

   σ̇ : pα = C: (ε̇ − ε̇  p − ε̇  th − ε̇  m): pα

  = C: (ε̇ − ε̇  th − ε̇  m): pα − ∑
β     

pα: C: p β γ̇ β

  = ∑
β    

hαβ γ̇ β.    (20)

The slip rate in slip system α can thus be calculated:
   γ̇ α = f α : (ε̇ − ε̇  th − ε̇  m)  with  f α = Σβ Y

 αβ  C: p β,  (21)
where

   Y αβ = (X αβ )−1  and  X αβ = hαβ + pα : C: p β.  (22)
The direct discretization of Eq. (21) may not give a correct solu-

tion for an elastic to elasto-plastic transient state 14) because this 
causes incompatibility between pre- (| τ α | < gα) and post- (| τ α = gα) in a 
one-time step. In this case, proper hardening in finite time incre-
ments should be taken into account, such that:

   τ α + Δτ α = sgn(τ α) ( gα + Δgα).   (23)
Therefore, Eq. (16) can be rewritten in an incremental form as 

follows:
   (σ + Δσ): pα = sgn(τ α)gα + ∑

β    
hαβ Δγ β.   (24)

Finally, the following equation should be solved numerically.

   Δγ α = ∑
β   

Y αβ(σ : p β + p β: C: (Δε − Δε th − Δε m) − sgn(τ β) gβ). (25)
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When the state is elastoplastic at the beginning of the step, the 
critical resolved shear stress is equal to the stress on the slip surface. 
In this case, Eq. (25) coincides with Eq. (21).

3. Transformation Plastic Strain Analysis
Stress applied to a steel material in phase transformation can 

cause large plastic deformation even when the stress is smaller than 
the yield stress. This phenomenon is called transformation plasticity 
supplement plastic strain is called transformation plastic strain. 
Transformation plastic strain significantly affects the residual stress 
and shape after heat treatment, so this type of phenomenon needs to 
be considered in heat treatment simulations. Greenwood and John-
son have created a model in which transformation plastic strain is 
linked with volume changes during transformation supposing that 
transformation plasticity is caused by the accommodation of strain 
difference due to volume changes during transformation. 15)

Meanwhile, Magee has presumed that load stress affects the se-
lection of variants during diffusionless transformation, which causes 
transformation plastic strain. 16) In addition, Otsuka et al. have shown 
that volume change plays an important role in the occurrence of 
transformation plastic strain in diffusionless transformation as 
well. 17) Leblond has solved analytically, based on the Greenwood-
Johnson mechanism, elasto-plastic deformation in a mother phase 
(soft layer) when a spherical new phase (hard layer that is not sup-
posed to deform plastically) is formed from the matrix of the mother 
phase involving transformation strain, and formulated transforma-
tion plastic strain. 18) This study is based on the Greenwood-Johnson 
mechanism as the purpose of present study is to calculate transfor-
mation plasticity during diffusion transformation. In this case, crys-
tal plasticity analysis schemes using the FEM 19) and aforementioned 
FFT 14) can be used without introducing an artificial term, namely 
transformation plastic strain, since transformation plastic strain can 
be derived from classic elasto-plasticity constitutive frameworks. 20)

Next, the inside of an RVE that is the calculation target is divid-
ed into polycrystals. In FEM, the crystal orientation is determined 
for each integration point (or element). However, in crystal plasticity 
analysis using FFT, a crystal orientation is given to each of the lat-
tice points placed at regular intervals in the region and the stress and 
strain are calculated at each point. These lattices are assigned to 
crystal grains using Voronoi tessellation. In this study, it is supposed 
that in one crystal grain, the initial orientations are the same. There-
fore, it can be supposed that there are grain boundaries between the 
lattice points, each of which has a different initial orientation. Usu-
ally, a transformation nucleus is formed from a grain boundary. 
However, this study supposes for simplification that the nuclei of 
new grains would form randomly. In addition, random crystal orien-
tations are given to the initial microstructure. Figure 1 (a) shows the 
initial polycrystal in which 100 crystal grains are placed in a 64 × 
64 × 64 lattice and Fig. 1 (b) for which new 100 phases are formed 
from the initial texture. Table 1 lists the parameters used in this 
study.

For the new phases, it is assumed that nuclei with crystal orien-
tations that satisfy the K-S relation with the mother phases would 
form at the same time. These nuclei spread isotopically (spherically) 
and transformation strain (ε m(x)) occurs on the phase-transformed 
lattice points. Hereinafter, the average in the RVE is referred to as 
“macroscopic” and the value at each lattice point as “microscopic”.

In order to validate the proposed numerical model, simulation of 
phase transformation under the stress-free condition is considered. 
Macroscopic transformation strain from the start of the transforma-

tion to its end can be theoretically expressed with the equation be-
low: 21)

   ε̄ = ε̄  m = βz,     (26)
where, ε̄ is macroscopic strain without load, so it matches the trans-
formation strain (ε̄  m) and it is in a linear relation with the volume 
fraction of the transformed phase (z) that has a transformation ex-
pansion coefficient (β). To allow Eq. (26) to strictly hold, the materi-
al needs to be isotropic. Therefore, in this verification of the appro-
priateness only, isotropic elastic constant is used which is indepen-
dent of crystal orientations.

Figure 2 compares macroscopic strain calculated from the nu-
merical scheme and the strain (normalized with β) calculated from 
Eq. (26) when β is 1.536 × 10−3. The numerical results in the graph 
show that macroscopic strain occurs linearly with the volume frac-
tion coinciding with the theoretical equation.

Figure 3 shows the volume fraction of the phase and plastic 
strain in each of the mother and daughter phase. In transformation 
expansion due to phase transformation, macroscopic and isotropic 
expansion occurs, so it seems nothing is happening at a glance, but 
plastic deformation actually occurs in the vicinity of new grain 

Fig. 1 Sample Voronoi tessellation and phase transformation: 100 grains 
in 643 cubic space

Table 1   Parameters for crystal plasticity calculation

Parent phase Daughter phase
Bulk modulus (GPa) 135 833 150 000
Shear modulus (GPa) 62 692 69 231

H0 (MPa) 10 550
τ0 (MPa) 30 100
τs (MPa) 40 130

q 1.0 1.0
Number of grains 100 100
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boundaries due to microscopic transformation expansion (Fig. 3 (b) 
and 3 (c)). However, on a macroscopically isotopic material, this 
type of plastic deformation occurs statistically in all directions, so 
plastic deformation without involving volume change does not oc-
cur as macroscopic strain. In the Leblond model, plastic deforma-
tion in the new phase is disregarded, but the numerical computation 

results using Table 1 show that plastic deformation occurs in the 
daughter phase as well.

Next, the calculation results of a case where stresses are applied 
in phase transformation are discussed. Tensile or compressive stress 
is applied before the phase transformation begins and is retained un-
til the phase transformation completes. Figure 4 (a) shows the strain 
changes under several stress levels clearly exhibit the strain depen-
dence on applied stress. Here, deducting the strain at no stress from 
that with stress applied at the transformation end produces transfor-
mation plastic strain. Figure 4 (b) shows the transformation plastic 
strain obtained for each stress value. These results show that when 
the load stress is from −50 to 50 MPa, the transformation plastic 
strain is in a linear relation with the applied stress. 15, 18, 20)

Meanwhile, when the absolute value of the applied stress ex-
ceeds 50 MPa which is the linear relationship between transforma-
tion plastic strain and applied stress no longer conforms which is 
approximately one half of the yield stress of the mother phase. This 
behavior matches the values shown in the papers. 15, 22) The transfor-
mation plasticity coefficient (KP) calculated from the linear relation 
at the low load stress (−50 to 50 MPa) in Fig. 4 (b) is 2.20 × 10−5 
MPa−1. This result almost correlates with the result from the Leb-
lond model (KP = 2.17 × 10−5 MPa−1).

4. Deformation Texture Analyses
This section discusses a deformation texture analysis scheme in 

the crystal plasticity framework using FFT and its application to 
plane strain compression calculation. Deformation involves local 
rotation, so deformation texture is formed, which affects the anisot-
ropy and other material properties. Some schemes have been pro-
posed for crystal plasticity deformation texture analyses: Analyses 
using FEM, 23) FFT, 8) and the self-consistent method. 8) In these pa-
pers, viscoplastic constitutive equations are used, but how the strain 

Fig. 2 Evolution of the macroscopic strain with the volume fraction of 
transformed phase (no applied stress, isotropic polycrystal)

Fig. 3   Local plastic strain distribution when 3% transformed

Fig. 4   Transformation plastic strain under several applied stresses
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rate sensitivity exponent (hereinafter, “m-value”) and other parame-
ters affect the calculation results have not been clarified. Therefore, 
this study examines the impact of the m-value on the texture forma-
tion by using strain rate-dependent constitutive equations.

In this section, for the sake of simplicity, the constitutive model 
uses the infinitesimal deformation theory. In addition, it is assumed 
that the calculation points are fixed despite the deformation.

A spin tensor is used to calculate crystal rotation. That is to say, 
when considering elasto-plasticity analysis of the velocity gradient 
shown below:

   L = L* + Lp,     (27)
the slip direction, slip plane, and Euler angle changes in each step 
can be expressed as follows using elastic spin (W *):

   ṡ = W *s,   ṁ  = W *m    (28)
   φ̇1  = −(W23

* sin φ1 − W31
* cos φ1) cot φ + W12

*

   φ̇ = W31
* sin φ1 + W23

* cos φ1

   φ̇2  = 
W23

* sin φ1 − W31
* cos φ1—

sin φ
 ,   (29)

where, Euler angles are in Bunge notation. The elastic spin is the 
anti-symmetrical part of the elastic velocity gradient tensor:

   W *  = 1—2  (L* − L*T ).    (30)

Using

   w α = 1—2  (sα ⊗ mα − mα ⊗ sα),   (31)

the plastic spin can be expressed as follows:

   W p = ∑
α   

w α γ̇ α.     (32)

Thereby, once the spin is determined, elastic spin can be easily 
calculated. As is the case with Eqs. (10) and (11), using the polariza-
tion tensor, elastic spin can be calculated from the spin tensor in a 
Fourier space:

   Ŵ(ξ) = 1—4  (ξ ⊗ û̇'(ξ) − û̇'(ξ) ⊗ ξ) = −Γ̂' 0(ξ) : τ̇̂ (ξ), (33)

   Γ̂' 0(ξ) = 1—4  (−Nli
0 ξj ξk + Nki

0 ξj ξl − Nlj
0 ξi ξk + Nkj

0 ξi ξl). (34)

In this case, the polarization tensor itself needs to be calculated. 
As a viscoplastic crystal plasticity model, the equation below is em-
ployed using the strain rate sensitivity exponent (m): 9–12)

   γ̇ α = γ̇ 
0 ( τ α—

gα  ) | τ α—
gα  |  1—m  −1

,    (35)

where, although all slip systems become active, when the m-value is 
sufficiently small, it approaches the strain rate independent constitu-
tive equation.

Placed in the RVE consisting of 1283 lattice points (Fig. 5) are 
2 000 crystal grains to calculate the deformation texture after plane 
strain compression. Initial crystal orientations are randomly given to 
the 2 000 crystal grains, the average strain in the y direction (width 
direction) is determined as 0, and 30% compressive strain is given 
in the z direction. Calculation results for this texture under these 
conditions are shown below.

Figure 6 (a) to 6 (e) show ODF (φ2 = 45°) when the m in Eq. (35) 
is varied from 0.05 to 0.5. Figure 6 (f) is ODF calculated using Eq. 
(21). These results show that typical rolling texture at the thickness 
center for the Copper and Brass orientations is developed under all 
the conditions. This is because strain from rolling at the center of 
the thickness is close to that under plane strain compression.

Meanwhile, the development of the texture varies depending on 
the m-value. When the m-value is 0.05, although the texture is weak 

on the whole, the Copper orientation is stronger than the Brass ori-
entation. In addition, as the m-value increases, the Brass orientation 
becomes stronger and the Copper orientation tends to become 
weaker. When the strain rate independent constitutive equation is 
used, the Copper orientation is stronger than the Brass orientation, 
similar to when the m-value is small. This matches the characteristic 
of the constitutive Eq. (35) that shows when the m-value is smaller, 
the strain rate dependency is smaller. These changes in the m-value 
can be understood as the materials’ temperature dependency (when 
the m-value is small, the temperature is low and when it is large, the 
temperature is high): The relation between the work hardening be-
havior by changes in the m-value and the texture formation matches 
the influence of stacking fault energy qualitatively, so they may be 
related.

5. Conclusions
This study proposed a crystal plasticity analysis scheme using 

Fig. 5   Voronoi tessellation (2 000 grains in 1283 cubic space)

Fig. 6   Strain rate sensitivity exponent dependence on ODF (φ2= 45°)
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FFT and discussed its application to transformation plasticity and 
texture analyses. The crystal plasticity analysis scheme using FFT 
can handle only periodic boundary conditions, unlike schemes using 
FEM. However, it can perform mathematical operations with very 
small computation resources and is capable of large-scale analyses.

The transformation plasticity analysis using this scheme has en-
abled analysis of transformation plastic strain through numerical 
computation and the result matched that from Leblond’s analytical 
model. In addition, nonlinearity of transformation plastic strain un-
der high stress could be naturally calculated from the classical elas-
to-plasticity constitutive equation.

Furthermore, this scheme can be applied to the calculation of 
deformation texture. Texture at 30% plane strain compression was 
analyzed to investigate the influence of the strain rate sensitivity ex-
ponent (m-value) on the texture. The results show that when the m-
value is smaller and the strain rate independent constitutive equation 
is used, the Copper orientation is strong and the Brass orientation is 
weak; and when the m-value is large (sensitive to strain rate), the 
Brass orientation is strong and the Copper orientation is weaker.
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