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Abstract
Phase transitions can be regarded as response phenomena in which a phase having cer-

tain characteristic stability and rigidity is broken against relatively large “external forces” 
such as heat, stress, chemical potential, and light. In this article, we report on the system-
atic investigation into correlations between the typical first-order phase transitions (such as 
melting and/or martensitic transformation) and the energetics as a function of lattice strains 
using the concepts of the Bain path, the physically allowed lattice-invariant (PALI) strain, 
and the generalized stacking fault (GSF) energy surface, within the framework of empirical 
potential and/or electronic structural descriptions. We discuss the conceptual relations of 
the first-order phase transition behaviors with elasticity, energetics, and lattice-dynamical 
instabilities found in our various atomistic simulations and show that the lattice-dynamical 
instabilities along these paths might also be useful information even for understanding the 
martensitic transformation in steel. In relation to these theoretical concepts, our in-situ 
experimental studies on the elastic moduli in steel alloys measured during the cooling cycle 
using the ultrasonic pulse sing-around method are also reported. The correlations between 
elastic modulus and austenite stability found in polycrystalline steel alloys are discussed 
based on the theoretical concepts above.

1.	 Introduction
Regardless of engineering classifications such as structural or 

functional material, materials show response phenomena for various 
“external forces” or their changes such as heat, stress, chemical po-
tential, light, and so on. Phase transition or phase transformation can 
be considered as a rigidity catastrophe where a phase of the physical 
state with characteristic stability and/or rigidity is broken to a rela-
tively large degree against “external forces”. 1, 2) Since the critical 
point of phase transition is a quantitative index, which measures the 
phase stability for “external forces” of the phase concerned, it is an 
important physical property for the development of materials and/or 
processes. For example, the melting point, which is a physically im-
portant quantity in solidification phenomena, is often used as an in-
dex indicating the high temperature resistance qualitatively even in 
industrial solid materials.

In contrast, if the accurate simulations and/or computer controls 
on complicated metallographic changes during the thermomechani-
cal treatments become possible, it will be easier to stably supply the 
products with minimum total cost that satisfy the customers. There-
fore, the material prediction technology using computers is highly 
expected. For example, since the mesoscopic dynamical simulations 
based on the Ginzburg-Landau type theory represented by the 
Phase-Field (PF) method are considered to be promising not only 
for essentially understanding non-equilibrium phenomena mediated 
by external forces, but also for the theoretical frameworks to de-
scribe the traditional experimental findings, 3, 4) their applications 
have been used for various fields in Nippon Steel & Sumitomo Metal 
Corporation. 5–10)

The mathematical framework of the PF method is positioned as 
the optimization problem for free energy functional spaces spanned 
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by some order parameters that have been artificially modelled in ad-
vance. In the framework of the PF method, various variables in the 
time evolution equations derived using the variational principle can 
be associated with the measured physical properties through the as-
ymptotic solution analyses. 4) Since the multiple time evolution 
equations are essentially considered within the scheme, many com-
petition phenomena are naturally observed within the PF method. 
For example, the method can reasonably describe the Mullins-
Sekerka instabilities and the dynamic supercooling phenomena in-
duced by the shape effects on the transition points and the interfacial 
movement speeds (i.e. Gibbs-Thomson effect and/or Laplace effect) 
during the phase transformation phenomena. 4) In the free energy 
density space under consideration of the PF method, very interesting 
physical information on the phase transition is inherently found 
from the viewpoint of microscopic theory, while response phenomena 
other than the relaxation processes anticipated in the modeling are 
sometimes actually revealed. 1, 2)

In the melting phenomenon (solid-liquid phase transition) as a 
typical first order phase transition, the basic scientific problem of 
“what is the essence of solid-state melting” is present even currently. 
In order to solve this problem, focusing on the physical properties of 
the solid phase prior to melting (the initial phase of reaction), the 
theoretical approaches for the essence based on the solid state phys-
ics can date back to the works of Lindemann 11) and Born 12) at the 
beginning of the previous century. They have proposed the concepts 
for solid-liquid phase transition phenomena called the “Lindemann 
criterion” and the “Born criterion” similar to the concept of the 
“Ostwald’s Step Rule”, 13) where the phase transitions can be regarded 
as successive reactions.

The former criterion by Lindemann proposes that the amplitude 
of atomistic vibrations in solids reaching a certain threshold results 
in melting phenomenon, 11) and the latter by Born proposes that the 
elastic property of solids is relevant to the melting phenomenon and 
that the temperature at which the shear modulus and/or its anisotropy 
disappear corresponds to the melting point. 12) These concepts in-
cluding the physical principle to grasp the trends of material proper-
ties are also useful from the viewpoint of material design, since such 
concepts make it unnecessary to obviously obtain physical quanti-
ties such as transition temperatures that are difficult to derive directly.

In this article including the additional concepts and computa-
tional analyses not mentioned in Ref. 2), our microscopic theoretical 
studies on the phase transition will be reviewed, 1, 2) in which we 
have investigated the correlation between the thermodynamic stabil-
ity and the lattice-dynamical instability in metallic crystal materials. 
In relation to these theoretical concepts, our in-situ experimental 
studies on the elastic properties in steel alloys measured during the 
martensitic transformation have also been reported. 14–17)

2.	 Phase Stability and Lattice Strain Energetics in 
Metallic Materials
Figure 1 shows a schematic energy diagram relevant to the reac-

tion coordinate of phase transition. Phase transition is a typical co-
operative phenomenon where the interactions among atoms and/or 
molecules in condensed phases act cooperatively to create new 
properties different from the properties in the isolated states. An ab-
stract coordinate system describing its degree of progress along a 
reaction path is called the “reaction coordinate”. If an appropriate 
reaction coordinate describing the focused reaction and its relevant 
energy diagram are found in some way, we can discuss the relative 
stability of the initial status, the stability for external forces, the ri-

gidity, the reaction speed, and so on, since the energy barrier on the 
reaction coordinate can be approximately estimated.

However, in the phase transition reaction which is a typical co-
operative phenomenon, we often encounter difficulties that actual 
reaction coordinates are too complicated to understand in many cases 
or that it is not understood how the reaction coordinate system 
should be theoretically handled. The intrinsic importance of the 
works by Lindemann 11) and Born 12) described above has been to 
open up the route that can estimate the associated energy diagrams 
from only considering the initial states of reactions, in order to un-
derstand the unknown reaction coordinates. In this chapter, how the 
elasticity and/or more general framework of the strain energetics are 
linked to the thermodynamic properties in the crystalline materials 
from the microscopic view is discussed based on our theoretical 
studies 1, 2).
2.1	Correlation between elastic property and phase stability in 

crystal lattices
In this section, we review the correlation between the elastic 

property that is a response phenomenon for infinitesimal strain and 
the thermodynamic phase stability. 2) Since the first order phase tran-
sition generally changes the interatomic bonds in the focused phase 
to a greater or lesser extent, the phase stability of the phase is likely 
to depend on the strength of the interatomic bonds. In the systems 
with strong interatomic bonds, the total energy from the ground 
state steeply increases with respect to the distortion perturbation 
from the surroundings, so that the elastic constants as the resistance 
indices against the infinitesimal strain tend to increase in general. 
Therefore, it is intuitively assumed that some correlations are ex-
pected to appear between the elastic properties and the phase stability 
in crystal phases.

There have been many attempts to organize this kind of correla-
tion from the measured values. For example, Fine et al. have pointed 
out that some linear relationships are found for the melting points 
TM and the elastic constant C11 in many cubic metallic systems. 18) 
Since the elastic constants for crystal lattices with small unit cells 
can now be easily evaluated using the first-principles calculations, 
we show the computational relationship between the elastic con-
stants C11 and melting points TM for the fcc lattices of some transi-
tion metals in Fig. 2. As pointed out by Fine et al., relatively good 
linear correlation can be seen in both values. 2)

Figure 3 (a) shows the structural energies for fcc and bcc in the 
4d transition metal series using the first-principles calculations, in 
which the values are displayed using the energy increments from the 

Fig. 1	 Schematic free-energy diagram as a function of reaction coordi-
nate during phase-transition

	 The reaction path is not always comprehensible for the corre-
sponding transition. If we find out the true reaction path as nearly 
as possible, the stability of initial state (or phase stability) can be 
estimated from the curves of free energy. The approximate 
curves of free energy near the initial state along the correspond-
ing reaction coordinate might be described by the lattice strain 
energetics which represents the initial reaction for the transition.
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hcp structure for each element. The occupation number (nd) of d 
electrons plays an essential role in the relative stability of the crystal 
structure in the transition metal systems and the crystal structure in 
a ground state changes as hcp → bcc → hcp → fcc → hcp from the left 
side to the right in the periodic table (with the exception of the 3d 
transition metal systems that are also induced due to the magne-
tism). The canonical band analysis (i.e. the band-structure calcula-
tion excluding the individuality for nucleus) has also suggested that 
this structural transition behavior in the periodic table arises from 
the energy competition stability among lattices that stems from the 
boundary location between the bonding and anti-bonding states for 
the d bands. 19)

Figure 3 (b) shows the calculation results of shear modulus C’(= 

(C11− C12)/2) for fcc and bcc lattices. The negative value of shear 
modulus in this figure physically means that the lattice-dynamical 
instability referred to as the elastic instability or the Born instability 
appears where the adiabatic potential curve due to the associated 
distortion is upwardly convex. If the bcc lattice is the thermody-
namically most stable structure, the elastic instability of fcc (i.e. 
close-packed) lattice appears. In contrast, in the zone with fcc phase 
stability, we can find that the elastic instability of bcc appears. That 
is, the fcc and bcc lattices mutually conflict in the elastic instability. 
In this article, we call this elastic relation between bcc and fcc lattices 
a relationship of “conflicting lattices”. The reciprocity between bcc 
and fcc (close-packed lattice) described here is highly universal 
from various theoretical analyses. 20, 21) It can also be understood 
from the behavior of the energy curve on the Bain path deformation 
as described in detail in the next section. In this way, the phase sta-
bility of the crystal is closely related to the elastic property such as 
shear modulus and the detailed study on the elastic property can 
conversely lead to the essential understanding of the phase stability.

The phase stability of the solid phase such as the melting phe-
nomenon on the high temperature side is also closely related to the 
shear modulus. Because the liquid phase has fluidity, it can be de-
fined as “the phase losing shear modulus”. This is intuitively more 
understandable than the correlation between the crystal stability and 
elastic property described above. In Fig. 4, we show a typical exam-
ple of the solid-liquid phase transition during the elevated tempera-
ture process by the molecular dynamics simulations based on the 
isobaric (NPT) ensemble using the Al-based Embedded Atom 
Method (EAM) potentials. 1) Since the actual melting phenomenon is 
a typical phase transition triggered by the heterogeneous nucleation 
in the vicinity of the surface or of the defects, in the molecular dy-
namics simulations with the perfect crystal systems, considerable 
super-heating is usually observed, in which the melting transition 
cannot be induced at the thermodynamic melting point (TM

t ).
At a certain temperature, the isotropic condition of vanishing 

shear moduli difference (C44 − C’ = 0) is satisfied, and the discontinu-
ity of the atomic volume can be observed. This temperature is called 
the mechanical melting point (TM

m), which corresponds to the limit 

Fig. 2	 Thermodynamic melting points (TM) as a function of C11
cal for fcc 

transition metals
	 The C11

cal are evaluated using the first-principles calculations. 2)

Fig. 3	 (a) Lattice energy increments from hcp structure and (b) Shear 
moduli of C’(= (C11− C12)/2) calculated for fcc and bcc in the 4d 
transition metals based on the first-principles calculations. 2)

Fig. 4	 Typical example of the temperature dependence of the atomic 
volume (Vatom) and shear moduli (C’ and C44) based on the NPT 
molecular-dynamics simulations based on the Embedded Atom 
Method. 1)

	 TM
t and TM

m denote the equilibrium (thermodynamic) and me-
chanical melting points, respectively.
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temperature of the superheated state for the solid. More sophisticated 
MD simulations using the Lennard-Jones crystal have demonstrated 
the atomic-scale mechanisms of bulk melting and have shown that 
the Lindemann criterion 11) and the Born criterion 12) described in the 
preface are simultaneously satisfied at the mechanical melting point 
(TM

m). 22) In the molecular dynamics analyses using some Al-based 
EAM potentials by the present authors, the strong linearity with 
considerable accuracy has been observed between the thermody-
namic melting point TM

t  and the mechanical one TM
m. 1) Therefore, if 

the declining behavior of shear modulus during the elevated temper-
ature does not depend on the substances, the phase stability of the 
crystal at high temperature is also suggested to have good correla-
tion with the shear modulus.
2.2	Energetics of Bain and PALI strains: Phase stability and 

elastic instability among conflicting lattices
This section describes that the phase stability between fcc and 

bcc is closely related to the lattice dynamical instability called the 
elastic instability among the conflicting lattices, using the energetic 
concept for the Bain strain or the Physically Allowed Lattice-Invari-
ant (PALI) strain. 1, 2)

Regarding the high-temperature phase stability in solids, some 
interesting findings have been reported from the materials-oriented 
aspects based on the first-principles calculation analyses. 23, 24) From 
the first-principles calculations within the local density approxima-
tion (LDA), Wills et al. have pointed out that there is a correlation 
between the shear modulus, C’(= (C11− C12)/2) and the structural en-
ergy difference between bcc and fcc, ΔE = Ebcc − Efcc (E is the total 
energy), in cubic transition metals. 23) For example, the shear modu-
lus of C’ in fcc increases as the ΔE increases when the ground state 
is the fcc. 23) This trend has also appeared in the computational re-
sults shown in Fig. 3 in the previous section. A similar consideration 
has been also made by Mehl et al. from the U. S. Naval Research 
Laboratory, in which they have pointed out that ΔE is likely to cor-
relate with the melting point based on the entanglement of the Born 
criterion described above. 24)

The Bain deformation is the tetragonal strain deformation of cu-
bic crystal as shown in Fig. 5 (a) proposed by Bain in 1924 as a 
model of the martensitic transformation of steel. 25) Under the small 
strain applicable to the elastic theory, the strain energy in cubic crys-
tals is described as: 26)

	 Estr = 1—
2  C11(e11

2 + e22
2 + e33

2)

	           + C12(e11e22 + e22e33 + e33e11)

	           + 1—2  C44(e12
2 + e23

2 + e13
2)			   (1)

Therefore, if the distortion corresponding to Fig. 5 (a),

	 e11= e22=  e—
2√ 3

 , e33 = −(e11+ e22), other eij= 0	 (2)

is substituted in Eq. (1), the following simple relation is derived,

	 Estr = 1—
2  C’e2, ( ∴C’ = 

C11− C12—
2  ).		  (3)

This expression describes that the curvature of the potential en-
ergy curve associated under the infinitesimal strain in the Bain path 
deformation directly leads to the shear modulus of C’. Figure 5 (b) 
shows the atomistic model for the fcc crystal lattice. From a slightly 
different viewpoint, the fcc lattice is considered to be formed by the 
bct lattice indicated by white atoms. When the deformation in this 
lattice is provided as shown in Fig. 5 (a), it can be imagined that the 
bct lattice inherent in a certain amount of distortion coincides with 
the bcc lattice. This is the reaction path for the martensitic transfor-
mation in steel originally imaged by Bain. 25) Since some character-
istic crystal orientation relationships with the parent phase (i.e. fcc 
phase) have been observed in the martensitic transformations of 
steels, the Bain path today does not necessarily represent the actual 
fcc-bcc phase transition path. 27–29) However, due to the convenience 
of grasping energetic trends and to the theoretical usefulness for es-
tablishing concept, the Bain path is still an important concept that is 
used for various theoretical researches at present. 21)

The theoretical concepts like the Bain path including physical 
quantities that can be experimentally constructed using the shear 
modulus C’ have been currently extended. This is because these 
concepts can provide, in the situations of experimental and theoreti-
cal discussion, useful knowledge on the energy barriers and the ri-
gidities existing around the ground state. One of them is the PALI 
strain proposed by Boyer. In the PALI strains, the change of primi-
tive vectors through an orthorhombic strain acting on a fcc lattice 
can be expressed as a product of the following matrices,

a = ( a1
a2
a3

 ) = 

1—2  (  0    a    a
a    0    a
a    a    0

 ) (  (1+ b)− 1−3     0           0
    0       (1+ b)− 1−3     0
    0           0       (1+ b) 2−3

 ) (  1    c            0
c    1            0
0    0    (1− c2)−1

 ) (  x̂ŷẑ  ).	 (4)

In Fig. 6, we show the schematic illustrations of lattice deforma-
tions under the PALI strain described by Eq. (4). In the PALI strain, 
similar to the Bain strain in Eq. (3), the following relationship with 

Fig. 5	 Schematic illustrations of (a) Lattice deformation under Bain 
strain and (b) Body centered tetragonal (bct) crystal structure 
inside fcc one

Fig. 6	 Schematic illustrations of lattice deformations under the PALI 
strain defined by Eq. (4). (a) Change in the lattice constant a pro-
duces a stress proportional to the bulk modulus B0, (b) Change in 
b produces a stress proportional to C11− C12, and (c) Change in c 
produces a stress proportional to C44.
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the observable elastic constants can be derived in the cubic systems 
under the infinitesimal strain limit.

	 B0 = 
C11+ 2C12—3  = V 

∂2E—∂V 2  , C’ = 
C11− C12—2  

	      =  3—4V  ∂
2E—∂b2  , C44 =  1—4V  ∂

2E—∂c2  			   (5)

Figure 7 shows an example of the contour plot of energy (E) 
under the PALI strain. The PALI strain found by Boyer 30) is often 
called the magic strain. 31) Since the fcc crystal lattice can be trans-
formed into itself by the physically allowed (symmetric) shear-strain 
tensors indicated by Eq. (4), three types of selections are present for 
the strain parameters b and c as the fcc structure (○ points) on the 
contour plot shown in Fig. 7 (a). Van de Waal has subsequently 
shown that the PALI strains, which describe the lattice self-transfor-
mation including the information on the elastic constants observable 
under the infinitesimal strain limit, can be derived for any lattice. 32)

The cross-section curve along c = 0 in Fig. 7 (b) is the Bain path 
energy curve (the so-called classical meaning), in which the points 
at b = 0 and b = 1/√ 2 − 1 correspond to the fcc and the bcc lattices, re-
spectively. When the fcc (bcc) lattice is in the ground state, the energy 
curve of the Bain path shows the maximum value in the bcc (fcc) 
lattice. Since the curvature in the vicinity of the ground state (fcc 
lattice: b = 0 in Fig. 7 (b)) gives strictly the shear modulus of C’ in 
the corresponding lattice, where the maximum value at the conflict-
ing lattice (i.e. bcc lattice: b = 1/√ 2 − 1) is likely to increase as this 
curvature becomes larger in the energy curve of the Bain path, the 
indication by Wills et al. described above 23) is assumed to be very 
plausible.

Moreover, the energy curve near the bcc lattice along the Bain 
path is upwardly convex. The reason why the shear modulus of C’ 
has a negative value (Fig. 3 (b)) and the elastic instability (Born in-
stability) appears can, therefore, be geometrically understood from 
the energy curve along the Bain path. This suggests that the relative 
crystal stability between bcc-fcc essentially comes from the elastic 
instability of the associated conflicting lattice. Grimvall et al. 21) have 
reviewed that the relationship between the phase stability and the 
elastic instability among the conflicting lattices described in this 
section is the correlation having universality established in many 
bcc-fcc (more generally the close-packed lattice) metallic systems.

2.3	Phase transition temperature and lattice dynamical instability
If crystalline solids are greatly distorted like Bain deformation, 

the lattice dynamical instability such as the phonon instability and/
or the elastic instability in different modes, which cannot be expected 
in advance from the corresponding strain energy curves, is some-
times induced in the crystals. 1) Figure 8 shows an example of the 
lattice dynamical instability under the Bain deformation in the fcc-
Al system, 1) which has been calculated using the EAM model sub-
mitted by Mishin et al. 33)

As shown in Fig. 8 (b), when the system is exposed to a certain 
degree of external strain along the Bain path, the soft mode in which 
the phonon frequency decreases at the [1/2 1/2 1/2] point in the Bril-
louin zone can be observed in the crystal concerned. If the system 
undergoes even larger distortion, the phonon instability, in which the 
corresponding frequency becomes a complex number, is first in-
duced at a location far from the zone center of the Γ point as shown 
in Fig. 8 (c). When the strain parameter of b further increases, the 
frequency becomes a complex number even in the vicinity of the 
Brillouin zone center (i.e. Γ point) as shown in Fig. 8 (d), which 
physically indicates that the long-term elastic instability is apparent 
in the crystals. In other words, the crystal lattice cannot withstand 
such very large strain along the Bain path, and the spontaneous de-
formation in the system is generally induced by the lattice dynami-
cal instability described above.

In Fig. 9 (a), we show the location of instabilities in the energy 
curve along the Bain path calculated for some EAM-Al models. The 
open (○) and closed circles (●) indicate the phonon and elastic insta-
bilities, respectively. In addition, the relations between the thermo-
dynamic melting temperatures and the energy locations of instabili-
ties are depicted in Fig. 9 (b). A strong linear correlation between the 
thermodynamic melting temperatures and the energy locations of 
phonon instabilities has been found as shown in Fig. 9 (b). 1) The re-

Fig. 7	 Contour plots of the total energy in the PALI strain (left panels) 
and energy plots along the c = 0 line (right panels) computed by 
allowing for volume relaxation for EAM6 in Ref. 1).

	 The contours are shown in every 0.01 eV/atom. In right panels, 
we also show the volume change under distortion by the dashed 
line. The energy plots via non-optimization of volume are also 
depicted by the dotted line. Energy is measured from the total 
energy of the equilibrium fcc structure based on the correspond-
ing potential. The saddle point ● corresponds to the bcc struc-
ture, while the fcc structure is located at the open circle points ○.

Fig. 8	 Phonon dispersion curves 1) as a function of strain parameter, b, 
along the Bain path (see also Fig. 7) for an EAM-Al model 33)

	 These calculations are carried out using the conventional cell of 
the face-centered tetragonal (fct) structure. The negative values 
are used to plot imaginary frequencies for convenience. x denotes 
the value of 1/2 in units of reciprocal unit vectors.
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sult suggests that the melting behavior of crystals is essentially re-
lated to not only the energetics, but also the lattice dynamic instabil-
ities. As shown in Fig. 8 (c), we have described that the unstable 
phonon mode that first appeared along the Bain path strain is located 
at the [1/2 1/2 1/2] point in the Brillouin zone. From the analyses of 
the eigenvectors of the dynamical matrix, the unstable mode is also 
found to correspond to the displacements in approximately the 
<112>{111} direction for all of the adopted EAM models, among 
which the crystallographic geometry of the instability is exemplified 
in Fig. 10.

These facts indicate that the phonon instabilities that first ap-
peared along the Bain path strain correspond to the <112>{111} di-
rection in the fcc lattice. It is more interesting to note that the vari-

ants of the <112>{111} direction correspond to the directions of the 
Heidenreich-Shockley partial dislocations and/or the twin directions 
in the fcc lattice. In other words, the atoms in the fcc lattice can be 
spontaneously displaced to this orientation without any energetic 
barriers under a certain strain along the Bain path. This suggests that 
the melting phenomenon in crystalline solids is related to the phe-
nomena of the dislocation emissions and/or its kinetics in the associ-
ated solids.

To discuss this quantitatively, the computational result on the 
correlation between the generalized stacking fault energy surface 
(GSFE surface or γ surface) and the melting point 1) is described in 
the final part of this section. The GSFE surface is the excess energy 
per unit area for a given relative displacement vector of one half of 
the crystal with respect to the other half when a perfect crystal is cut 
across the slip plane into two parts (Fig. 11 (a)). The basic concept 

Fig. 9	 (a) Typical examples of energy curves along the Bain path calcu-
lated using some EAM models of Al 1)

	 We also show the location of instabilities for each potential model 
in the energy curve along the Bain path.

	 (b) Relation between the thermodynamic melting temperatures 
and the energy locations of phonon (○) and/or elastic instabilities 
(●) in (a)

Fig. 10	 Schematic of the phonon instabilities first appeared under 
strain along the Bain path 1)

	 The unstable mode corresponds to the displacements in ap-
proximately the <112>{111} directions.

Fig. 11	 (a) Example of γ surface for displacements along a (111) plane 
in fcc-Al with the equilibrium lattice constant (α0)

	 The energy and displacement units are in mJ/m2 and in the unit 
Burgers vector, | b | = |α0[101]/2|, respectively. The energy surfaces 
exceeding the value of 500 mJ/m2 are truncated. The corners of 
the plane and its center correspond to identical equilibrium 
configurations, i.e., the ideal fcc lattice.

	 (b) Projections of the γ surfaces on the <112> direction calcu-
lated using some EAM-Al potentials

	 (c) Relation between the thermodynamic melting temperatures 
and the GSF (Generalized Stacking Fault) energies along the 
<112> direction, where the internal figures of 0.05, 0.10, 0.15, 
and 0.20 show the displacement values expressed by the unit 
Burgers vector

	 All these figures are reproduced from the original data in Ref. 1).



- 8 -

NIPPON STEEL & SUMITOMO METAL TECHNICAL REPORT No. 120 December 2018

of the GSFE surface was first introduced by Vitek. 34) Figure 11 (b) 
shows the projections of the (111) GSF energy surfaces on the 
<112> direction calculated using the Al-based EAM potentials ad-
opted in Ref. 1). The first energy maximum value in this curve is 
sometimes called the “unstable stacking fault energy”, and Rice has 
pointed out that it is an important material property serving as a re-
sistance index of dislocation generation in the crystal. 35) The next 
energy minimum is the “stable stacking fault energy”.

In the initial slip displacement region along the <112> direction 
around the ideal fcc configuration, we have found that there is clearly 
a strong linear correlation between the melting temperatures and the 
GSF energies as shown in Fig. 11 (c). 1) For the solid-liquid phase 
transition phenomena, the concept of the “dislocation-mediated 
melting” whereby the generation of dislocation in the crystal is an 
important ingredient for solid melting phenomena has been in exis-
tence for some time. 36–38) Our computational result described in this 
chapter 1) suggests again that the melting phenomenon is a disloca-
tion-induced type first-order phase transition 36–38) when the transition 
is viewed from the initial state side of the solid phases.

3.	B ain Path Energetics and Martensitic Transfor-
mation in Iron
In the previous chapter, based on the energetics for the Bain 

strain and/or the PALI strain, the presence of an elastic conflicting 
lattice such as bcc-fcc, and the relationship between the thermody-
namic stability and lattice dynamical instability have been de-
scribed. In iron-based alloys such as steels, the phase transitions 
among the conflicting lattices such as martensitic transformations 
(fcc ←→ bct) and/or γ ←→ α transformations (fcc ←→ bcc) actually 
exist. This chapter describes from the framework of the band model 
of ferromagnetism (Stoner model) how the Bain path energy of iron 
(Fe) is changed by the presence of magnetism (or spin polariza-
tion), 2) and introduces our relevant experimental studies on steel-
based martensitic transformation. 14–17)

3.1	Bain path energetics in iron viewed from band model of fer-
romagnetism: Effect of magnetism
Iron and/or iron-based alloys are the structural materials with the 

longest history having important positions in commercial activities. 
From the viewpoint of microscopic materials science, they are also 
the systems with many unexplained parts regarding both the phase 
stability and the lattice dynamical stability. This stems mainly from 
the complex spin structures in the solid phases with the Fe element. 
The physical interpretation on the phase stability near the fcc lattice 
is particularly difficult. Various spin states for the Fe-based alloys 
with fcc structure, such as non-magnetic (NM), ferromagnetic (FM), 
antiferromagnetic (AF), spin spiral (SS), and non-collinear (NC), 
are degenerated with an energy difference of only several mRy/atom 
(1 Ry = 13.6 eV) depending on the associated atomic volume. 39)

However, the lattice-mechanical reciprocity (or elastic conflict-
ing) among bcc-fcc (see Sec. 2.2) in the ferromagnetic (FM) and 
nonmagnetic state (NM) has been confirmed from the analyses on 
the phonon dispersion curves within the framework of the Density 
Functional Theory (DFT). 40, 41) Hsueh et al. have performed the 
fixed-spin-moment calculations for bcc-Fe, and reported that the lat-
tice dynamical stability is available in the FM state with a magnetic 
moment of about μ = 2.2 and that the elastic instability with the com-
plex frequency near Γ point appears near the NM state. 40) In con-
trast, Zhang has indicated from a similar theoretical analysis that the 
lattice dynamic stability for fcc-Fe is available near the NM state 
conflicting with the bcc lattice and that the elastic instability with 
the complex frequency near Γ point appears in the FM state with 
about μ = 2.0. 41)

The lattice dynamic instabilities 40, 41) indicated by them can be 
visually understood by obtaining an energy map on the Bain defor-
mation for the Fe system based on the fixed magnetic moment cal-
culations. Our computational result is shown in Fig. 12. Figure 12 (a) 
shows the energy curve surface of the Bain deformation (in eV/atom 
unit: the energy for NM-fccFe (○) is used for the energy standard) 
when the magnetic moment is changed from the non-magnetic state 

Fig. 12	 Two dimensional contour plots of (a) Total energy surface E(µ, c/a) (in eV/atom), the energetic field surfaces for (b) (∂E/∂(c/a))µ, and (c) (∂E/∂µ)c/a 
as a function of magnetic moment (µ) and Bain-path shear parameter (c/a) along with the atomic volume optimization

	 The energy contour lines in (a) are labeled relative to the total energy for NM-fcc with the GGA equilibrium atomic volume (VEQ
NM−fcc = 10.15 Å3/

atom). The zero line in each contour is drawn by the thick blue line. The red dotted lines and the black solid ones indicate the negative and posi-
tive values, respectively. The black circles show the configurations becoming the local minimum and/or the saddle points in the energy map of (a), 
which satisfy the condition of (∂E/∂(c/a))µ = (∂E/∂µ)c/a = 0. The thick solid line depicted in each contour is the hypothetical reaction coordinate 
(RC), which has been numerically searched by the steepest-descent method from the saddle point of (µ, c/a) = (1.63, 0.92). For reference, the bcc 
and fcc configurations are shown by the vertical broken lines (c/a = 1/√ 2 and 1) and the location of NM-fcc is denoted by the open circle.
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(μ = 0) to the ferromagnetic state (μ = 2.5). Since the magnetovolume 
effect has a large effect on the binding properties in a ferromagnetic 
state, these analyses were carried out using the computational tech-
nique that allows the atomic volume relaxation with the fixed values 
of the Bain path variable (c/a). The maps shown in Fig. 12 were de-
duced by the 50 × 50 points calculations. The GGA (generalized gra-
dient approximation) is also adopted for the electron many-body 
correlations. In Fig. 12, the vertical broken lines at c/a = 1/√ 2 and    
c/a = 1 correspond to the bcc and the fcc structures, respectively. 
Figure 12 (b) and (c) are the differential field maps of total energy E 
for the Bain deformation variable (c/a) and magnetic moment (μ), 
respectively ((b)  (∂E/∂ (c/a))μ, (c)  (∂E/∂μ)c/a). For each contour plot, 
the red line indicates the negative value, the black line indicates the 
positive value and the thick blue line indicates the zero value. In ad-
dition, the solid circle (●) in the figure satisfies the conditions of 
(∂E/∂ (c/a))μ = (∂E/∂μ)c/a = 0, which imply that those points corre-
spond to the energy local minimum values and/or local maximum 
values (or saddle points). The ground state within the present com-
putational scheme adopted becomes the ferromagnetic bcc of (μ, c/a) 
= (2.2, 1/√ 2) indicated by the solid circle (●) at the upper left of Fig. 
12 (a). 42)

Focusing on Fig. 12 (b), the zones of the magnetic moments with 
the elastic instability can be clearly identified both for bcc and fcc 
lattices. In bcc (c/a = 1/√ 2), the elastic instability (C’ instability: Re-
fer to Sec. 2.2.) appears in the zone with a low spin region of μ < 1.2. 
This indicates that the Bain path energy curve gives the upward 
convex at the associated point as shown in the right panel of Fig. 7. 
In contrast, in fcc (c/a = 1), the elastic instability appears in the zone 
with a high spin region of μ > 1.6. These results completely support 
the lattice dynamical instability analyses from the phonon disper-
sion curves described above. 40, 41) From our preliminary calculations, 
the high spin side might also have the threshold of elastic instability. 
The elastic instability is found to appear in the zone of (μ < 1.2, 
μ > 4.0) for bcc and of (1.6 < μ < 3.5) for fcc, respectively.

The zone of 1.2 < μ < 1.6 for the magnetic moment is physically 
interesting. Both bcc and fcc have the minimum value with shallow 
energy (Both phases have the lattice dynamical stability. Refer to 
Fig. 13 (a): μ = 1.4.), where the energy barrier between both lattices 

almost diminishes. Such a zone is also used as the basic concept for 
developing the GUMMETALs, 43, 44) whereas it may be difficult to 
achieve the property in the case of ferrous systems because the spin 
polarization must be controlled. The GUMMETALs with Titanium-
based alloy compositions are the materials that show unique defor-
mation modes where the plastic deformations are not caused by the 
dislocation motions. 43, 44) It is interesting to note that those materials 
have been searched near the compositional boundary transiting from 
hcp to bcc in Ti alloy systems where the elastic conflicting between 
the bcc and the close-packed structures can be collapsed. 43, 44)

The thick black lines displayed on each map in Fig. 12 are the 
hypothetical reaction coordinate (RC: reaction coordinate) between 
the associated fcc-bcc transitions, where the hypothetical RC 
through the saddle point of φ ≡ (μ, c/a) = (1.63, 0.92) has been deter-
mined by the steepest descent method using the gradient 

∆

φ. The 
meaning of “hypothetical” is that the actual reaction system might 
not pass this coordinate because the physical relaxation rates of the 
magnetic moment (μ) and the Bain path variable (c/a) are possibly 
different. Figure 13 (a) shows some projection curves on the line of 
μ = const. in Fig. 12 (a).

For reference, the RC obtained from the steps above is also 
shown. The RC energy barrier of fcc → bcc obtained within the 
framework of this analysis is about 50 meV/atom and the value of 
bcc → fcc is about 180 meV/atom. As shown in Fig. 13 (a), the fcc 
lattice becomes energetically unstable and the energetic stability for 
the bcc lattice becomes apparent as the magnetic moment increases. 
In addition, in the regions where the magnetic moment is small, the 
elastic instability (Born instability) appears in which the energy 
curve in the vicinity of the bcc lattice is upwardly convex. Con-
versely, the elastic instability is found to appear in the vicinity of the 
fcc lattice where the magnetic moment becomes large. Thus, in iron 
and/or iron-based alloys, the magnetic interaction plays an essential 
role with regard to the thermodynamic stability and the elastic insta-
bility between bcc-fcc lattices.

Figures 13 (b) and (c) shows the behavior of the magnetovolume 
effect as a function of the magnetic moment (μ). ωNM−fcc represents 
the coefficient of volume expansion based on the atomic volume in 
non-magnetic fcc. The magnetovolume effect refers to a phenome-

Fig. 13	 (a) Calculated total energies as function of c/a for the systems with the optimized atomic volume projected on the lines of µ = const. in Fig. 12 (a). 
Energy is measured from the total energy for the equilibrium NM-bcc with V = VEQ

NM−fcc .
	 (b) Optimized volume surface (ωNM−fcc(µ, c/a)) as a function of magnetic moment (µ) and Bain-path shear parameter (c/a)
	 The atomic volume is plotted by the increment ratio based on the volume for the equilibrium NM-fcc state.
	 (c) Atomic volume curves as a function of c/a projected on the lines of µ = const. in (b)
	 The thick green lines depicted in (a) and (c) are the hypothetical reaction coordinates (RC).
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non in which the magnetic properties of materials and their volumes 
change by mutually interacting with each other. Figure 13 (c) shows 
that we can observe the atomic volume expansion of about 10% 
with the transition from non-magnetic fcc to ferromagnetic bcc in 
the case of iron. In the present theoretical framework where the 
Stoner model’s so-called band theory of ferromagnetism 45) is con-
sidered, we can obtain the physical picture on the fcc → bcc transi-
tion for iron, in which the local ferro-magnetization due to the 
change of the magnetic moment promotes the lattice dynamical in-
stability for fcc and the ferromagnetic bcc with the dynamical stabil-
ity is induced.

One of the merits for using the Stoner model is that it becomes 
possible to consider the factor of the lattice dynamical instability 
during the Bain path strain as a response phenomenon of the elec-
tronic structure due to the distortion perturbation. Figure 14 shows 
an example of the electronic structural responses around the Fermi 
level (the left panel: majority spin, the right panel: minority spin), 
when a small Bain strain perturbation is added for the bcc lattice ((a) 
μ = 1.00: Unstable, (b) μ = 1.40: Stable) and the fcc lattice ((c) 

μ = 1.40: Stable, (d) μ = 1.85: Unstable) with the dynamical stability 
and instability induced by the associated magnetic moments. The 
black and color lines in Fig. 14 show the electronic band dispersions 
unperturbed and perturbed by the small Bain strain, respectively. We 
have found, as shown in Figs. 14 (a) and 14 (d), that the lattice dy-
namical instability becomes apparent in the systems where the shape 
of the Fermi surface greatly changes with respect to the distortion 
perturbation. In contrast, as shown in Fig. 14 (b) and (c), the lattice 
dynamical stability has appeared in the systems where the Fermi 
surface shape is not sensitive to the associated strain perturbation.

In the final part of this section, we briefly mention the lattice dy-
namical stability observed for the δ-bcc phase at high temperature in 
pure iron. The δ-bcc actually exists as a thermodynamically stable 
phase at high temperature exceeding the Curie point while the bcc 
with nonmagnetic state (μ = 0) has the elastic instability as described 
above. The readers may, therefore, question whether the δ-bcc can 
be dealt with as the band nonmagnetic phase. There is a specific 
fluctuation of magnetic spins (the specific spin configuration) as an 
important degree of freedom that exceeds the description limit of 

Fig. 14	 Electronic band structure response around the Fermi level perturbed by the small Bain-path distortion
	 We show the responses for (a) µ = 1.00 in bcc with the lattice-dynamical instability, (b) µ = 1.40 in bcc with the stability, (c) µ = 1.40 in fcc with the 

stability, and (d) µ = 1.85 in fcc with the instability.
	 The left and right panels show the band dispersions in majority and minority spin states, respectively. The black and color lines depicted in each 

panel indicate the electronic structure unperturbed and perturbed by the small Bain-path distortion, respectively.
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the Stoner model described in this manuscript. Several methods for 
approximating the spin specific fluctuations have recently been de-
veloped to describe the paramagnetic states. Based on these meth-
ods, it has been reported that the elastic instability may not appear in 
the Bain path energy curve in the paramagnetic bcc. 46) It has also 
been confirmed that the phonon instability does not appear in the 
phonon dispersion in the paramagnetic bcc at finite temperature (T = 
900°C). 47)

3.2	In-situ measurement of elastic properties during martensite 
transformation based on the concept of Bain path energetics
Regarding the dependence of the element compositions on the 

phase transformation temperature for steels, various research ex-
pressions have been submitted over a long period of time. For ex-
ample, the following formula relating to the starting temperature of 
martensite transformation is well known. 48)

Ms (K, at%) = 818 − 71C + A1 + 7Co − 14Cr − 15Cu
   − 23Mn − 8Mo − 6Nb − 13Ni − 4Si + 3Ti − 4V + 0W	 (6)
The above formula describes a thermodynamic index indicating 

the phase stability for the austenite phase (the fcc phase) at the low 
temperature side. The physical meaning and the mechanism at the 
atomistic level on the weighting factor and/or the ± symbol of the 
element for the transformation temperature are not yet understood. 
As described in the previous section, it will be qualitatively expected 
in iron-based alloys that the lattice dynamical instability for the bcc 
state disappears due to the magnetic interaction accompanying the 
decrease of temperature, and that the fcc state having the dynamical 
stability at high temperature can transform to the bcc state at a cer-
tain temperature. However, from the viewpoint of such lattice ener-
getics and/or dynamics, there have been few attempts to conduct ex-
perimental studies on the martensitic transformation processes in 
steels.

Figure 15 shows the effect of impurities ((a) Carbon, 17) (b) Alu-
minum) for the Bain path energy curves in the non-magnetic Fe 
(NM-Fe) (for the calculation method, refer to Ref. 17)). As the car-
bon concentration increases, the energetic instability for bcc mono-
tonically increases as shown in Fig. 15 (a). In contrast, as shown in 
Fig. 15 (b) for aluminum, the energetic instability for bcc is found to 
decrease monotonically with the increase in the concentration. The 
total energy difference between bcc and fcc (ΔE ≡ ENM−bcc − ENM−fcc) as 

a function of the impurity concentration is shown in Fig. 15 (c). The 
carbon element enhances the relative stability of the fcc structure 
with respect to the bcc and conversely aluminum is an element that 
decreases the relative stability of fcc. Furthermore, this effect is 
found to have a strongly linear correlation with each concentration. 
Therefore, the weighting factors and the physical meaning of ± sym-
bols in Eq. (5) that show that the phase stability of the austenite 
phase (fcc phase) at the low temperature side can be qualitatively 
reproduced for carbon and aluminum based on the present energetic 
considerations.

As described in Sec. 2.2, the energy curve of the Bain path de-
formation quantitatively includes the information of shear modulus. 
Therefore, if the element dependence on the shear modulus in the fcc 
lattice during the transformation process can be measured in-situ, 14) 
it may be possible that a part of the energy curve in question before 
transformation, which gives the phase stability index of the austenite 
phase (γ phase), is grasped. Thus, focusing on the carbon element 
that remarkably increases the relative stability of fcc, we performed 
direct in-situ measurements of the elastic modulus during the mar-
tensitic transformation for the steels in which the amount of carbon 
has been changed, using the ultrasonic pulse sing-around method. 15–17)

Details of experiments are covered by our original references 15–17) 
and the overview thereof is shown in Fig. 16. As described in the 
upper part of Fig. 16, 9Ni steels in five levels that changed the car-
bon content were prepared in this experiment. After being austen-
itized at 850°C, the elastic modulus was measured in the cooling 
process from 2°C/s to 200°C and 1°C/s to 140°C. The phase trans-
formation temperature (Ms point or Bs point) was determined by di-
latometric measurements. It is metallographically confirmed that T1 
and T2 are bainite and T3–T5 are martensite. 49)

Figure 16 (a) shows the change of shear modulus from 400°C to 
the phase transformation temperature for T1, T3, and T5 specimens. 
The lattice dynamical instability and/or its precursory behavior (i.e. 
soft mode and softening of stiffness), which are often observed in 
the martensitic transformation for the shape memory alloy sys-
tems, 50, 51) have not been observed in the present in-situ measure-
ments, and the shear modulus is found to simply increase with the 
decrease in temperature. The temperature dependency of shear 
modulus near the phase transformation temperature (near the Ms 

Fig. 15	 Impurity effects of (a) carbon 17) and (b) aluminum on the Bain-path energy curves in non-magnetic Fe (NM-Fe), (c) Structural energy difference 
between NM-bcc and NM-fcc (∆E ≡ ENM−bcc − ENM−fcc) as a function of impurity contents

	 The energetic stability of fcc is monotonously increased and decreased with the contents of carbon and aluminum, respectively, which qualita-
tively agree with the physical meaning for the plus-minus sign of the coefficients of C and Al in Eq. (6).
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point or Bs point) has been changed from the extrapolation line at 
the high temperature side to the higher shear modulus side (i.e. the 
excess shear modulus), 15–17) and the behavior preventing the lattice 
dynamical instability of austenite (fcc) due to lowering temperature 
has been observed.

We show the transformation temperature and the shear modulus 
at the transformation temperature with respect to the carbon concen-
tration in Fig. 16 (b). It has been found that there is a clear inverse 
correlation between both. This is the experimental verification of the 
concept of Bain path energetics (Fig. 16 (a)) that the shear modulus 
is correlated with the associated phase stability. Figure 16 (c) shows 
the relationship between the transformation temperature and the 
shear modulus in the system studied. A strong linear correlation 
among them has been observed in the present study. These results 
indicate that the curvature change of the Bain deformation energy 

curve with the carbon atom is an important elementary process for 
stability of the austenite phase at the low temperature side. Our re-
cent research also suggests that this change in the shear modulus 
due to carbon elements affects the relaxation process in the martens-
itic transformation process and that the change in the shear modulus 
is experimentally confirmed to affect the crystallographic variant se-
lection of the martensite structures. 49)

4.	 Conclusions
In this article, we have outlined how the elastic dynamical prop-

erties in crystalline solids are related to the physical properties on 
the thermodynamic phase stability based on our theoretical studies 
from the microscopic perspective. In addition, as an experimental 
study related to these theoretical studies, the research on in-situ 
measurements of elastic properties during the martensitic transfor-

Fig. 16	 Top panel shows the chemical composition for each specimen analyzed in the experiments 15–17)

	 (a) Shear modulus measured in T1, T3, and T5 steels in the course of cooling cycle 15, 16)

	 The arrows indicate the locations of transformation temperature measured by dilatation method for T3 and T5.
	 (b) Shear modulus at the (Martensitic: Ms and/or Bainitic: Bs) transformation temperature (left) and the corresponding transformation temper-

ature (right) as a function of carbon contents 15–17)

	 (c) Shear modulus at the Ms and/or Bs temperature as a function of corresponding transformation temperature 15–17)
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mation in steels has been introduced. The phase transformation phe-
nomena in crystalline solids are assumed to be often related to the 
lattice dynamical instability whereby the associated solids become 
dynamically unstable and cannot retain their structures. Since the 
electronic structure in steels is so complex, researches on steels 
from the materials scientific perspective as described in this report 
have only just begun. The usefulness of artificial intelligence (AI) 
and machine learning (ML) has been recognized also for materials 
science and technology. The aim of AI and ML is basically to ex-
tract the essential principles from a large amount of data. This hot 
activity is in fact equivalent to the activities in natural science to 
date itself.

The research described in this paper is rather an approach with 
the strong aspect of classical human data mining based on con-
densed matter physics. While both approaches will play a comple-
mentary role for the time being, computational materials science 
based on the energetics that can reasonably connect phenomena and 
physics with different concepts is also a very exciting research field. 
In order to maximize the possibilities of steel materials, it is always 
important to scientifically understand the materials in question at 
any time. We conclude this paper with the wish that computational 
materials science proven by the mutual complement of humans and 
computers will contribute to this field together with the knowledge 
from advanced experimental studies.
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