
NIPPON STEEL TECHNICAL REPORT No.  96 July 2007

- 57 -

UDC 669 . 14 - 134 : 539 . 4

Prediction of Hardness Distribution in Forged Steel by
Neural Network Model

Takashi FUJITA*1 Tatsuro OCHI*1

Toshimi TARUI*2

Abstract

A prediction system for hardness distribution in forged steel has been developed

by adapting FEM with the hierarchical type neural network. This system consists of

two parts: the FEM-computer simulation of metal forming during forging process;

and the neural network prediction for hardness distribution in steel after forging

and cooling. This report presents details of the system and an example of an

application to the forging process of a knuckle arm.

1. Introduction
The reduction of the weight of automotive parts is required from

the standpoint of improving the fuel efficiency of automobiles, and
the same is true of automotive steel parts. In order to reduce the
weight of an automotive part, it is an effective method to increase
the part’s strength so as to permit the decreasing of its wall thickness
and therefore its weight. This method has already been applied to the
frames, outside sheets, etc. of automobiles. At present, R&D is being
conducted on higher-strength forging steels which would be
applicable to the undercarriage, and engine parts. On the other hand,
the design modification made necessary by use of a higher-strength
steel takes much more time and labor since it requires repeating the
process of creating a prototype, testing its material and feeding the
test results back to the steel composition. However, if the material
distribution of a forged part can be estimated with fair accuracy, it
should be possible to determine the weakest point of the part, reflect
it in the design and speed up the development of a suitable steel
material.

Concerning the estimation of material characteristic1-10), studies
in the fields of sheets and plates, in particular, have advanced
significantly. In many of those studies, the method of calculation
called a physical model is employed. This is a method of estimation
by sequential calculations. In this method, heatedγgrain size is first
estimated from the heating temperature, heating time and condition
of precipitation. Next, from the estimatedγ grain size and rolling
pass schedule, recrystallized or non-recrystallizedγ grain size and
residual dislocation density are estimated. Then, from the estimated
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grain size and dislocation density and the cooling conditions, the
factors of metallurgy structure that influence the material
characteristic (phase fraction, grain size and shape, etc.) during
transformation are estimated. Finally, the overall material
characteristic is estimated from those factors. Since this method of
estimation sequentially simulates the metallurgical phenomena
involved in the process, it allows the determining of factors that
influence the material characteristic easily. On the other hand, in the
process of sequential estimation, errors tend to accumulate easily.
Besides, at the stage of estimation of the material characteristic, even
the slightest variation in the estimated factors of structure can
significantly influence the estimation result. Thus, the accuracy of
estimation with this method is clearly limited.

As another method of estimating material quality, the use of a
neural network has been reported11-14). There are several types of neural
networks. The most popular of them is the hierarchical type. In this
type of neural network, nonlinear operators called units are provided
in each of the input, intermediate and output layers, and the input is
related to the output by adjusting the link loads that describe the
transmissions between the units. The advantage of the neural network
is that it can be applied to even nonlinear phenomena and phenomena
in which many parameters are related to one another in a complicated
manner. It should be noted, however, that the neural network itself is
a sort of black box. In the case of a multilayer neural network, in
particular, it is extremely difficult to define the physical meanings of
the link loads. Table 1 compares a physical model and a neural
network model for estimation of material quality.

We estimated material hardness by using a neural network model
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which has the characteristics mentioned above. In addition, we
estimated hardness distribution in forged parts by using the model
incorporated as a user subroutine in the forging FEM analysis software
DEFORM-3D which is available on the market. This paper describes
the results of the estimations.

2. Structure of Neural Network Used for Material
Estimation Model
Fig. 1 shows the structure of the neural network used for our

material estimation model. The network consists of one input layer,
two intermediate layers and one output layer. Process conditions
(heating temperature, forging temperature, strain, cooling rate, etc.)
and steel chemical composition, are provided to the input layer and
the output layer is provided with hardness. Thus, the system is such,
that when the relevant data is input to the input layer, the calculated
hardness is output to the output layer. The input and output values
were standardized based on their maximum and minimum values.
As the transfer function of each of the units, a sigmoid function was
used. The input values for each of the units were simply added up.

x = Σ wi h i (1)

y = 1 / 1 − exp −x (2)

Where, wi denotes link load; hi, value of output from each unit in
before layer; and y, value of output from this unit.

3. Learning Method and Teaching Data
The process of relating input data to output data in such a way

that a specific output is obtained from a specific input, (determining
coupling coefficient (link loads) between the units in a neural network)
is called learning, and reference input/output data which are
previously given for learning are called teaching data. The purpose
of learning is to minimize the sum of squares of the differences
between teaching output data and neural network calculation output
data. In the learning, an optimum value is searched for by varying
the link loads. There are several methods of learning. For example,
the back propagation method applies Newton’s method to the learning
rules, and the extended Karman filter method applies the Karman
filter to the learning rules. In the present study, the extended Karman
filter method15) was used for learning.

Small specimens 8 mm in diameter and 12 mm in length were
used to collect teaching data. They were subjected to hot working
which simulated hot forging. The hardness of each of the specimens
was measured after cooling. A total of 1,055 sets of data were collected
under varying test conditions. The ranges of the collected data are
shown in Table 2.

As mentioned earlier, the neural network has a very flexible
structure and by increasing the number of units provided in its
intermediate layer, the neural network can adapt to any functions.
When experimental values are used as the teaching data, it is necessary
to estimate their accuracy. In the present study, the experimental error
was assumed to be 5% for the purpose of the learning. Learning was
deemed to be completed when the maximum error of the difference
between the experimental value and the result of repetitive calculation
for learning became 5% or less. For example, in the program step
that compares teaching data and learning data during the repetitive
calculation for learning, if the hardness data indicating maximum
error was HV400, the learning was assumed to be completed when
the learning data entered the range HV380 to HV420. Similarly, if
the hardness data indicating maximum error was HV100, the learning
was assumed to be completed when the learning data entered the
range HV95 to HV105.

Table 1  Comparison of physics model and neural networks model

Neural networks model

Quality of the material is estimated by using the complicated

regression equation that can describe every function.

Accuracy of estimation improves by accumulating the

result of the simplified experiment.

Even quality of the material of the complicated system that is

not formulated in a physics model is predictable.

It can be estimated even if bainite or martensite is mixed in

ferrite and pearlite.

Much experimental data is necessary.

The meaning of the coefficient is weak in comparison with

physics model.

Physics model

It is based on the metallurgy phenomenon.

Phase fraction and grain diameter are estimated from

dislocation density, nuclearation rate and growth rate.

Quality of the material is estimated by these value.

The factor which influences quality of the material is specified easy.

An error is easy to bring about because it is the accumulation of the

estimation.

The transformation model of bainite and martensite isn’t

established.

Outline

Advantage

Disadvantage

Fig. 1  Structure of neural networks
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4. Results of Learning
Fig. 2 compares all the teaching data (measured values) used for

the learning and all the learning data (calculated values). Over a wide
hardness range, the measured and calculated values fall within the
5% error at the end of the learning.

Fig. 3 shows the results of over-learning with the teaching data
hardness range narrowed down to HV117 - HV422, the number of
data sets reduced to 959 and the error at the end of learning set at
0.1%. The variance in measurement is reproduced even though the

teaching data and learning data completely agree with each other as
shown in Fig. 4. Thus, over-learning is unsuitable for practical use.

In the present study, a link weighing set created from the learning
shown in Fig. 2 was built in our FEM forging analysis system.

5. Configuration of Forging Material Quality
Estimation System
As mentioned already, the analysis of forging itself was made

using the FEM software “DEFORM3-D” which is available on the
market. With this software, it is possible to simulate forging and
cooling by setting shape data (specimen shape, die shape, etc.), heating
conditions (furnace temperature, heating time, etc.), forging
conditions (forging speed, die temperature, contact heat transfer
coefficient, etc.) and cooling conditions (definitions of contact
surfaces with various types of coolants, heat transfer coefficients,
etc.).

The FEM calculation is performed in increments of time. For all
the elements of the FEM mesh cut in the forging element in each
time increment, temperature, strain, etc. are calculated. Based on the
calculated time, temperature and strain data, the data necessary for
estimation of hardness were extracted. In order to estimate hardness,
it is necessary that chemical composition, heating temperature, forging
temperature, strain, strain rate and cooling rate must be given. We

Table 2  Teaching data for estimation of hardness

C (mass%)

Si (mass%)

Mn (mass%)

P (mass%)

S (mass%)

Ni (mass%)

Cr (mass%)

Cu (mass%)

Mo (mass%)

V (mass%)

t-Nb (mass%)

t-Al (mass%)

t-Ti (mass%)

Zr (mass%)

Pb (mass%)

Ca (mass%)

t-B (mass%)

t-N (mass%)

Heating temperature (℃)

Forging temperature (℃)

Strain

Strain rate (1/s)

Cooling rate (℃/s)

Hardness (HV)

Min.

0.0017

0.009

0.15

0.0017

0.0029

0

0

0

0

0

0

0

0

0

0

0

0

0.0014

680

640

0

0

0.5

59

Max.

0.6

1.63

2

0.021

0.1

0.503

1

0.29

1.01

0.51

0.031

0.039

0.5

0.002

0.17

0.0024

0.0011

0.016

1300

1300

2.42

12.25

10

603

Ave.

0.313

0.940

1.387

0.0152

0.0159

0.034

0.314

0.035

0.091

0.0915

0.0023

0.0270

0.0237

0.0000

0.0027

0.0001

0.0001

0.0097

1111

897

1.52

8.00

0.64

288

Fig. 4 Comparison of the estimated value of suitable-leaning and
over-leaning

Fig. 3  Comparison of the experimentation and the calculation

Fig. 2  Comparison of the experimentation and the calculation
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assumed the maximum temperature at the time when the strain before
forging was zero as the heating temperature, the time-strain average
temperature while a strain was applied (Equation 3) as the forging
temperature, the cumulative strain as the strain, the average strain
rate (Equation 4) as the strain rate, and the average cooling rate from
800℃ to 500℃ as the cooling rate.

External file 1 was created which described the chemical
composition of the specimen steel since the forging software had no
input term for chemical composition. On the basis of the heating
temperature, forging temperature, strain, strain rate and cooling rate,
calculated for each element throughout the forging and cooling
process, and the chemical composition data provided by external file
1, the authors calculated the hardness for each element at the end of
the cooling at which the FEM calculation was finished. The
calculation of hardness was performed by using external file 2 that
described the learned link weighing set. In order to secure the
applicability of the neural network even if it is restructured in the
future, external file 2 describes the number of inputs, the number of
outputs, the number of intermediate layers and the number of units
in each of the intermediate layers, all of which define the structure of
the neural network.

Fig. 5 shows the configuration of our forging material quality
estimation system.

T = ti − t i − 1 ε i − ε i − 1 TiΣ
i = m

n

/ tn − tm εn (3)

ε = ti − t i − 1 ε i − ε i − 1Σ
i = m

n

/ tn − tm =
εn

tn − tm
(4)

Where, T denotes average forging temperature; tm, time at which
forging starts; tn, time at which forging ends; εm, initial strain (= 0);
and εn, cumulative strain.

6. Forging Calculation Example
Here, the forging of a knuckle arm is discussed as an example of

calculation using our system. The calculation was performed under
the following conditions.

   Material chemical composition: 0.33C - 1.2Si - 1.6Mn - 0.1V
   Material shape: 68 mmφ × 210 mm
   Heating condition: Material evenly heated at 1,200℃
   Forging condition: Forging speed 300 mm/s
   Cooling condition: Air cooling after forging
Fig. 6 shows the temperature distributions in the work in the

forging and cooling processes. Multiple steps were carried out in the
forging process. However, since the inter-pass time was comparatively
short, one-pass forging was judged possible for the simulation and
hence, the calculation was performed with one-pass forging. The

Fig. 5  Estimation system of material distribution of forged part

Fig. 6  Temperature distribution of forging and cooling process
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hardness distribution in the forged part at the end of cooling is shown
in Fig. 7. According to the calculation results, the hardness of the
flash is high, whereas that of the stem is low. However, the calculated
hardness matches fairly well with the hardness of the actual forged
part. The higher hardness of the flash is considered due to the fact
that the flash was subjected to a higher rate of forging and a higher
rate of cooling. The flash of the actual forged part were of bainite
structure, suggesting that our estimation model would be applicable
not only to a ferrite-pearlite structure but also to a bainite structure.

7. Problems to Solve in the Future
The hardness estimation model that has been described so far

produces fairly good results when it is applied to steel materials of
ordinary chemical composition and simple processes of heating,
forging and cooling. However, when the variance in steel chemical
composition is fairly wide or when the steel material is subjected to
a rather more complicated process (e.g., repetitions of heating and
cooling), the model does not produce satisfactory results. At present,
the following problems have been noted with the hardness estimation
model.

One problem is that although estimation by interpolation produces
a relatively accurate result, estimation by extrapolation is inaccurate
(there are cases where it produces a ludicrous result). At present,
there is a current discussion taking place regarding whether this
phenomenon is inherent in material quality estimation using a neural
network. As a possible solution to this problem, an attempt has been
made to improve the accuracy of estimation through extrapolation
by standardizing the teaching data using the range 0.25 to 0.75 instead
of the ordinary range 0 to 1. However, the attempt has not been very
successful. A definitive solution would be to collect extensive teaching
data and apply estimation by interpolation exclusively. At present,
testing is being conducted to increase the volume of teaching data.
At the same time, there has been consideration given to introducing
to the learning process the basic laws of material quality (e.g., the
material hardness increases when the carbon content is increased or
the cooling rate is raised).

Another problem is that as the process factors determine the
material quality greatly but only the heating temperature, strain, strain
rate and cooling rate are considered (other factors are left out of
consideration). For example, the strain is introduced as a substitute
for the dislocation density, which is a physical factor. However, in
multi-pass forging, dislocation recovery and recrystallization occur
in each pass, causing the dislocation density to decrease. Therefore,
there is a possibility that the relationship between cumulative strain
and dislocation density will change significantly in this case. In
addition, some new phenomena, such as precipitation, can take place

Fig. 7  Hardness distribution of forged part

when the work temperature is retained or raised in the cooling process.
These phenomena are left out of consideration in the teaching data.
With the present estimation model, it is impossible to estimate these
factors. All this is considered due to the absence of a factor which
indicates the time integral of temperature. At present, consideration
is being made to adding time-serial temperature factors, such as
temper parameter.

Still another problem concerns the accuracy of teaching data. The
present learning is based on the 5% accuracy rule. However, there is
no guarantee that all the teaching data falls within this accuracy. This
means that there is the possibility of over-learning. The poor accuracy
of estimation by extrapolation cited as the first problem might be
ascribable to over-learning. This is considered due to the fact that
test data obtained in the past was directly used as learning data. In
this respect, it is necessary to carefully examine the origin of the
data in the future.

8. Conclusion
On the premise that a neural network would be applicable to a

situation in which several phenomena, such as metallurgical ones,
are involved in a complicated manner, a material quality estimation
model was created using a neural network. In addition, a forging
material quality estimation system was built by incorporating the
model in forging FEM analysis software. The simulation results
concur fairly well with the measurement results. On the other hand,
in the course of the study, several problems with the system were
revealed. It is important to solve them in the future.
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