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Abstract

 Visualization of shaft pressure variations and spatial changes caused by slipping

in the blast furnace has established by turning stave temperature and shaft pressure

data into images distributed in two dimensions. In addition, combining the two-

dimensional distribution of secondarily processed data of changes in space and time

with the progress of operation data enables early detection of shaft pressure fluctua-

tions. It has been also found that there exists a relationship between the cohesive

zone root position, assumed by the visualized two-dimensional image of the stave

temperature change over time, and the origins of shaft pressure fluctuations. It is

extracted quantity of characteristic namely an independ-ent ingredient from a two-

dimensional image using an independent component analysis. It will be expected

that spatial image and time series order become easy by watching a change of time

series of independent ingredient. We have developed “Large scale database Online

Modeling” as the practical method based on the Just-In-Time modeling concept on

blast furnace operation, which has very complicated physical phenomena and strong

non-linear specific characteristics. The validity of the developed modeling method

has been confirmed by the study with blast furnace operation data, then the past

similar operation data have been searched and the prospective operation data have

been estimated very quickly and precisely.
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1. Introduction
In operating a blast furnace, it is extremely important not only to

grasp the present furnace conditions accurately but also to predict

future furnace conditions as accurately as possible. As a matter of
fact, in the field of iron-making, blast furnaces have been operated
on a highly stable basis thanks to the operators’ efforts to grasp the
present furnace conditions and predict the future furnace conditions

*4 Nagoya Works
*5 Waseda University



NIPPON STEEL TECHNICAL REPORT No.  94 JULY 2006

- 97 -

by means of statistical analysis of actual operational data1-4) and cal-
culations using models5-8) and through the application of artificial
intelligence (AI)9-14) and the application of their personal experience.
However, factors that impede stable operation of blast furnaces are
increasing. They include the rationalization (reduction) of manpower,
the increasing use of raw materials and fuels of inferior properties,
the augmentation of iron output to meet expanding demand, etc. Under
these conditions, in order to secure the required productivity coeffi-
cient and decrease the consumption of reducing agents, determining
various phenomena in the furnace during non-steady operation, pre-
dicting future furnace conditions and building a system for quantita-
tively presenting measures to take are called for more strongly than
ever before.

On the other hand, recent years have seen a dramatic improve-
ment in computer performance, diffusion of inexpensive hardware
and database systems for storing large volumes of digital data, while
the sophistication of digital image processing technology increases
unabated. All this has made it possible to implement technologies
for collecting huge volumes of blast furnace operation data in a rela-
tively short time, storing them for prolonged periods and converting
them into visual images.

In order to build a new blast furnace control system using those
technologies, it is necessary to develop highly accurate continuous
sensors, databases which permit storing and retrieving comprehen-
sive blast furnace operation data, and a system which permits effi-
ciently visualizing and analyzing the blast furnace operation data.
Recently, therefore, a large-scale database was built and a technol-
ogy was developed for converting blast furnace operation data into
two-dimensional visual images using the database. Additionally, non-
steady phenomena was analyzed in the blast furnace using the ap-
propriate data stored in the database. This paper describes the results
of those activities.

2. Database for Blast Furnace Operation Data
Nippon Steel’s blast furnace database system was built in the

1980s. Since then, it had been used for some 20 years. However,
since both the hardware and software of the system were obsoles-
cent and the disk capacity was not very large, using the system to
analyze non-steady blast furnace operations involved various prob-
lems. Therefore, the authors built a new database system as shown in
Fig. 1 in order to collect blast furnace operation data in as short a
period as possible and analyze them on a real-time basis.

The outline of this system is as follows. Production data, blast

conditions, burden charging conditions, iron/slag tapping-related data
and various types of sensor data that are collected by a process com-
puter are compiled every minute, every hour, every day or every
month according to the purpose for which they are used. Data col-
lected from the individual blast furnaces are transmitted to a com-
mon server on an hourly basis and stored there. Basically, the au-
thors plan to accumulate data about all of our blast furnaces for all
campaigns. As a rule, the data thus accumulated can be accessed
from any of the personal computers connected to the company’s lo-
cal area network (LAN) via the Internet.

3. System that Provides Two-Dimensional Images of
Stave Temperature/Shaft Pressure Data
Despite the development of sophisticated physical models, AI

and various types of probes in recent years, grasping and predicting
non-steady phenomena in actual blast furnaces still depends largely
on the experience and skill of the operators in the field. This is due,
at least in part, to the fact that every blast furnace is provided with
many different sensors. The blast furnace is a tall structure having a
large inner volume. Of the many different sensors installed in the
blast furnace, thermometers alone number several hundred. Organ-
izing all the data obtained by those sensors and processing them into
useful information must have required extensive experience. It is
considered, therefore, that by employing a computer system to pro-
cess all the sensor data, it becomes possible to utilize them more
easily and more effectively. Nippon Steel has developed VENUS
(Visual Evaluation and NUmerical analysis System for blast furnace
operations)

 
–

 
a system that provides continuous, two-dimensional

images of blast furnace stave temperature/shaft pressure data.
3.1 Method of two-dimensional imaging of data15-18)

While taking the blast furnace body shape into consideration, the
furnace outer profile was projected onto two-dimensional planes in
vertical and horizontal directions to lay out the measured values ob-
tained by sensors on the two-dimensional planes in such a manner
that they precisely corresponded to the three-dimensional sensor in-
stallation position information to prepare equal-value, contour and
vector diagrams of the measurement data. Since many of the blast
furnace sensors are installed at unequal intervals, the authors devel-
oped an equal-value curve retrieval algorithm applicable to any sen-
sor position. For any region devoid of sensors, a virtual grid appro-
priate to the required space resolution was set and actual measure-
ment data obtained in its neighborhood was subjected to spatial in-
terpolation using the actual three-dimensional Euclidean distance
between the virtual grid and its nearest sensor so as to interpolate the
value on the virtual grid.
1) Example of visualization of stave temperature

An example of two-dimensional visualization of stave tempera-
ture is shown in Fig. 2. In the figure, the horizontal axis represents
the furnace azimuthal angle, the vertical axis represents the furnace
height, and each asterisk (*) indicates the position of a sensor. By
continuously updating the visual information, it is possible to quan-
tify and visualize non-steady phenomena of stave temperature dis-
tribution in the furnace in an animated form.
2) Example of visualization of shaft pressure

An example of two-dimensional visualization of shaft pressure
is shown in Fig. 3. In the figure, each arrow indicates a spatial varia-
tion vector of shaft pressure, that is, a pressure drop. It can be seen
that compared with numerical data, the visual image greatly facili-
tates understanding of the change in shaft pressure, such as the point
of occurrence of a pressure fluctuation.Fig. 1   Outline of data base
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It is considered that various phenomena that occur in the blast
furnace change with the lapse of time and from space to space. There-
fore, in obtaining two-dimensional images of shaft pressure, it was
calculated that not only the spatial differential vector of shaft pres-
sure but also time differential of shaft pressure taking past data into
account as described in the next section.
3) Visualization of time-series changes

With two-dimensional images, like those shown in Figs. 2 and 3,
it is possible to grasp the condition at a given instant but impossible
to grasp the time-series change. By visualizing time-series changes
in only four furnace radial directions as shown in Fig. 4 (0, 90, 180

and 270 degrees from top down), it is possible to grasp not only the
change from space to space but also the change with the lapse of
time. Fig. 4 shows the time-series changes in shaft differential pres-
sure in a vertical direction. From the figure, it can easily be seen that
the shaft pressure changed at around 6:00, largely in the 0-degree
direction.

By continuously visualizing (animating) data shown in Figs. 2
and 3 on the computer, it becomes possible to easily grasp the time-
series changes of stave temperature and shaft pressure.
3.2 Spatial differential vector of shaft pressure

The shaft pressure sensitively reflects the changes in packing
structure and gas flow in the furnace. In order to make an in-depth
analysis of the pressure information, the spatial differential of shaft
pressure, or the shaft pressure drop, has been monitored. The newly
developed system employs a visual image of the spatial differential
vector of shaft pressure, which is a generalized pressure drop, in
place of the pressure drop.

As secondary processing of the visualized image of the shaft pres-
sure, the authors defined the spatial differential vector of shaft pres-
sure in a three-dimensional space that takes into account the bottle-
shaped furnace body characteristic of the blast furnace and visual-
ized it on two-dimensional planes projected in the vertical and hori-
zontal directions (Fig. 5).

Spatial variation can be defined for stave temperature as well.
3.3 Time differential

When the gaseous or solid flows in the furnace fluctuate, the heat
exchange that takes place at the furnace wall becomes markedly un-
stable. In addition, since the cohesive zone has poor gas permeabil-
ity, when the cohesive zone changes in thickness or shape in the
furnace radial direction, it is considered that the gas flow through the
cohesive zone becomes uneven and the gas often tends to selectively
pass through regions where the permeability resistance is smallest.
In this case, it is conjectured that the transient change of the stave
temperature in the region through which the gas selectively passes is
greater than in other regions. Therefore, as the secondary processing
of the visual image of stave temperature, the authors defined time
differential and visualized it on two-dimensional planes projected in
the vertical and horizontal directions. By using the time differential,
it is possible to grasp the stave temperature fluctuations in the fur-

Fig. 2   Two-dimensional image of stave temperature

Fig. 3   Two-dimensional image of shaft pressure

Fig. 4   Distribution of shaft pressure drop

Fig. 5 Spatial distribution of spatial differential vector of shaft
pressure
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nace earlier and more accurately than when the measured tempera-
tures are simply monitored. Time differential can be defined for shaft
pressure as well.

As described later, it is possible to estimate the level of the cohe-
sive zone root from the time differential of stave temperature in its
visual image or from the time differential of shaft pressure, that is,
the pressure drop of shaft.

Thus, by visualizing the stave temperature/shaft pressure distri-
butions and their analytical values two-dimensionally, it becomes
possible to easily grasp their spatial and transient variations in both
the furnace height and furnace radial directions. In addition, it be-
comes possible to detect a shaft pressure fluctuation earlier and more
positively than when only the probes installed at the furnace top are
used.
3.4 Estimation of cohesive zone root using visual image

The authors attempted to estimate the level of the cohesive zone
root using secondary-processed data in two-dimensional visual im-
ages. Various methods for estimating the cohesive zone have been
reported19-25). They all use either the shaft pressure or the furnace
body temperature. In our method of estimation using a two-dimen-
sional visual image as well, there are two possible approaches

 
–

 
one

using the stave temperature distribution and the other using the shaft
pressure distribution.

In the method using stave temperature distribution, the cohesive
zone is estimated from the time differential of stave temperature (Fig.
6). In the cohesive zone, the gas permeability resistance is so large
that the flow of gas passing through the cohesive zone does not al-
ways become a plug flow and hence, partial out-gassing occurs fre-
quently. As a result, at the position corresponding to the root of the
cohesive zone, the stave temperature is considered to change locally.
Therefore, it can be assumed that the region in which the stave tem-
perature variation per unit time is conspicuously large is the root of
the cohesive zone.

In the method using shaft pressure distribution, the cohesive zone
is estimated from the spatial differential vector of the shaft pressure.
Ordinarily, the pressure drop in the cohesive zone is about twice that
in the shaft. In the shaft, even when the permeability decreases due
to a restrained central flow, powder accumulation, etc., the gaseous
flow considerably diverges and becomes uniform. In the cohesive
zone root, by contrast, the gas hardly diverges laterally because of a
large permeability resistance. This is considered to cause an out-gas-
sing toward the furnace top and an abnormally large pressure drop.
In other words, the pressure rise due to out-gassing plays the role of

a sensor that reveals the cohesive zone. Thus, there is the possibility
that the root of the cohesive zone can be determined from the posi-
tion at which the pressure rises abnormally. However, since only a
few shaft pressure gauges are installed in the bosh in which the co-
hesive zone is likely to exist because they can induce clogging, we
decided to use the time differential of the stave temperature to esti-
mate the root of the cohesive zone.

First, the authors prepared an equal-value diagram of time differ-
ential of stave temperatures from the stave temperature distribution.
Next, a higher or lower threshold value of time differential was set
and cut out patterns formed by equal-value curves of the threshold
value. Then, the contours of those patterns were divided into upper
and lower curves. By averaging each of the curves, the authors esti-
mated the radial distribution of the cohesive zone root at the top and
bottom, respectively26).

It should be noted that the above method of estimation assumes
that a small-scale out-gassing occurs in the neighborhood of the co-
hesive zone. Namely, if that phenomenon does not occur, the method
is ineffective. The method cannot be applied either if a large-scale
out-gassing which is not ascribable to the cohesive zone occurs since
in this case, the large-scale out-gassing is detected in the first place.

An example of estimation of the root of the cohesive zone in an
actual blast furnace is shown by the solid lines in Fig. 7. The high
and low limits of time differential of stave temperatures that were
used to determine the cohesive zone were ± 0.2℃/min. This crite-
rion needs to be verified taking into consideration the actual operat-
ing condition and years of operation of the blast furnace to which the
above method is applied. It can be seen from Fig. 7 that the region is
assumed to be the level of the cohesive zone root can be determined,
albeit partly. By tracing such a region on a time-series basis, it is
possible to quantify the radial distribution of the cohesive zone root
and its transient variation.

4. Pattern Analysis of Visual Images by Independent
Component Analysis27)

In order to analyze in-furnace fluctuations using visual images, it
is necessary to monitor both the two-dimensional space information
on the blast furnace body surface and the information on its transient
change. However, it is not always easy for the operator to continu-
ally monitor them simultaneously on the CRT display of the com-
puter system. Therefore, there was a discussion concerning extract-
ing certain characteristic values from two-dimensional visual im-
ages, and monitor the transient changes of those characteristic val-
ues.

As the technique to extract characteristic values from visual im-
ages, independent component analysis (ICA) was adopted. In recent
years, ICA is attracting attention as a method for accurately extract-Fig. 6   Time differential of stave temperature

Fig. 7 Estimation result of root of cohesive zone by time differential
rates of stave temperature
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ing the latent characteristic values in the fields of image processing
and brain action signal processing. ICA consists of extracting statis-
tically independent components from a group of multidimensional
data (voice signals, visual images, etc.) and evaluating the extracted
independent components, thereby quantifying the characteristics of
the multidimensional data. As the ICA algorithm in the present study,
we used FastICA developed by Hyvarinen et al.28). FastICA uses
kurtosis

 
–

 
a forth order cumulant

 
–

 
to evaluate the statistical indepen-

dence of each individual component.
By applying ICA to visual image x

 
(t) for a suitable period of

time, it is possible to extract basic image A that represents the visual
image and a dividing matrix that separates out independent compo-
nent s

 
(t) that indicates how the basic images are combined to form

individual images. The correlation of visual image x
 
(t), basic image

A and independent component s
 
(t) can be expressed by the follow-

ing equation.
x (t) = A

 
s

 
(t) (1)

Basically, the number of basic images can be set arbitrarily. As-
sume, for example, that the number of basic images is set to five.
Then, five independent components s

 
(t) are determined for the five

basic images. Monitoring the changes of those independent compo-
nents corresponds to monitoring animated two-dimensional images.

Fig. 8 shows five basic images, A
1
-A

5
 (shown at right in the fig-

ure), obtained by applying ICA (number of independent components:
5) to a group of visual images of shaft pressure in a certain blast
furnace for one year, together with the transient changes of independ-
ent components, s

1
(t) - s

5
(t), for the individual basic images (the lower

five rows at left in the figure) and the rates of transient variation of
blast volume and shaft pressure.

Five basic images are shown here. As in the case of two-dimen-
sional visual images of shaft pressure, the horizontal axis represents
the furnace radial direction and the vertical axis represents the fur-
nace height direction. Some of the basic images clearly show the
blast furnace conditions. For example, in basic image A

2
, the shaft

pressure distribution in the furnace height direction is horizontal. It
is considered that this image shows the basic shaft pressure distribu-
tion in a blast furnace. It is also considered that basic images A

1
, A

3

and A
4
 correspond to images indicating causes of pressure fluctua-

tion, and that basic image A
5
 corresponds to an image indicating the

condition of pressure fluctuation. Concerning the relationship be-
tween furnace conditions and basic images, they need to be verified
quantitatively in the future.

From the diagram showing the change in blast volume, it is esti-
mated that furnace permeability began declining at around 12:00 on
March 10, leading to a reduction of blast volume starting at around
18:00 on March 12. Looking at the independent components in that
period, it can be seen that the independent component of basic image
A

2
 representing the stability of furnace operation was decreasing and

that the independent components of the other basic images were fluc-
tuating. Paying attention to independent component S

4
(t) that corre-

sponds to basic image A
4
, it can also be seen that it had been fluctu-

ating markedly about a day before the furnace permeability declined
(part A in Fig. 8).

As described above, by observing the transient changes of both
the two-dimensional visual images and the characteristic values (in-
dependent components) extracted by independent component analy-
sis, it should become possible to monitor the blast furnace operation
both more quantitatively and more accurately.

5. Large-scale Database Online Modeling29)

When monitoring the blast furnace operation or deciding on some
action to take with the blast furnace, it is common practice to refer to
relevant operational data obtained in the past or the diagram show-
ing the change in operating condition of the furnace. Ordinarily, this
retrieval of similar data obtained in the past is done based on the
operator’s experience and recollection. Naturally, no operator is free
of human error. Therefore, in order to allow for effective utilization
of relevant data obtained in the past, the authors studied the applica-
tion of large-scale database online modeling technology to automate
a similar data retrieval process. When this is achieved, it should be-
come possible to predict future trends using past data.

With the progress of computer hardware and database system
technology in recent years, it has become possible to accumulate
huge volumes of data and retrieve necessary information from them
speedily. Under that condition, local modeling techniques based on
the new concept called “Just-In-Time (JIT) modeling” 30, 31) or “lazy
learning” 32, 33) are attracting increasing attention. These modeling
techniques work as follows. First, data obtained by observation over
a wide operating range beyond the rated design points are directly
stored in a database. Then, each time the need for system prediction,
etc. arises, data most strongly related to the input of “query” is re-
trieved as “neighborhood” data from the database and a local model
interpolating the output of the retrieved data is formed to obtain the
output for the query.

The above new concept is characteristic in that a local model is
created only when the need for system prediction, etc. arises and that
after the prediction is made, the local model is discarded to allow for
the accumulation of new observation data. As a rule, the choice of
“neighborhood” does not depend on time, and the phase space of

Fig. 8 Independent component transient responses of shaft pressure
distribution image
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observation data can be expanded in order to reveal the nonlinear
characteristics of the system. Case-based reasoning34) in the field of
qualitative reasoning is based on the same concept.

The problem with JIT modeling is that in order to retrieve data
“neighborhood” to the “query”, it is indispensable to obtain the dis-
tance between the query and each of all the observation data, and put
all the data in proper order each time any system prediction, etc. is to
be made. Since the blast furnace is a process (system) which is
strongly characterized by complicated and nonlinear physical phe-
nomena, a large number of observation points are set within it. There-
fore, when attempting to build a large-scale database with the phase
space of observation data expanded, the computation load becomes
so large as to make it difficult to use the database online.
(1) Concept of retrieval of similar data obtained in the past

In the present study, therefore, a practical technique was discussed
to avert the above problem in applying JIT modeling online to a
large-scale database (Fig. 9).

This technique consists of: (1) applying a stepwise method to
select only the variables that contribute to the system output from
among a huge number of variables, including the phase of variables
of observation data, and positively eliminate variables which can be
a noise, (2) storing the observation data contained in the multidi-
mensional phase space formed by the selected variables in a quan-
tized database for retrieval, (3) searching the quantized database for
data neighborhood to the query on a quantum-by-quantum basis to
improve the efficiency of retrieval and reduce the computing load
substantially, and (4) estimating the query output using a local model
to interpolate the output of the retrieved similar data. This technique
is the same as JIT modeling in that at the end of the estimation, the
local model is discarded to allow for accumulation of new observa-
tion data so as to respond to the transient changes in the characteris-
tics of the system to which the technique is applied.

In this paper, the above technique is termed Large scale data-
base-based Online Modeling (LOM). An example in which LOM
was applied in the operation of an actual blast furnace for its valida-
tion is shown below.
(2) Example of retrieval of similar case in the past

This is an example of retrieval of a similar case that was experi-
enced in the past focused on the hot metal temperature. First, the
data items that are considered effective for retrieval of the hot metal
temperature are selected from the appropriate blast furnace opera-
tion database. Specifically, query data obtained in the past eight hours
are taken out from the database, and data items that are strongly re-

lated to the hot metal temperature one hour after the query are se-
lected from those query data using a stepwise method. Then, after all
the data of the selected items are quantized and compressed, a simi-
lar case is searched for using similarity as the yardstick. As the simi-
larity, ∞ norm was used.

 (2)
An example of retrieval of a similar case in the past is shown in

Fig. 10. The figure shows the changes that were observed 48 hours
before and after 0:00 that was set as the reference time for retrieval
of a similar case. Namely, Fig. 10 a) shows data retrieved based on
the actual hot metal temperature, and Fig. 10 b) shows the change in
hot metal temperature retrieved as the similar case. It can be seen
that although only eight hours of data were actually used for the
retrieval, two data sets showing similar changes were retrieved in 96
hours (48 hours before and after the reference time). In Fig. 10 a),
the averages of the similar data in the 48 hours after the reference
time, shown in Fig. 10 b), are shown as the predicted values. It can
be seen that these values also agree well with the actual values.

Concerning the actual values and one-hour predicted values, their
correlation was verified using a wealth of data, including that col-
lected in other periods. As a result, it was found that the correlation
coefficient was about 0.7, indicating a relatively strong correlation
(Fig. 11).

In order to further improve the accuracy of retrieval by our sys-
tem, efforts are being made to press ahead with studies to optimize
the configuration (contents and number of data items, time step, data
accumulation time, etc.) of the database that is the basis for retrieval,
method of selecting data from the database, number of quanta, simi-
larity, local models, etc.

6. Conclusion
By converting stave temperature/shaft pressure data into two-di-

mensional visual images, it has become possible to objectively moni-
tor the change in shaft fluctuation and spatial changes in the blast

Fig. 9   Large scale database online modeling Fig.10   The past similar data sets and estimated
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furnace that are caused by slipping. In addition, by observing the
spatial and time differential of data and the change in blast furnace
operation data at the same time, early detection of abnormal phe-
nomena in the blast furnace is possible, such as the shaft pressure
fluctuation.

Furthermore, it is expected that monitoring both the spatial and
transient variations of relevant data at the same time will be facili-
tated by the application of independent component analysis (ICA)
whereby characteristic values are extracted from visual images and
their transient changes are monitored.

By using the large-scale database online modeling technique, we
attempted to retrieve similar blast furnace data from data accumu-
lated in the past. As a result, we confirmed that the technique was an
effective method of data retrieval and that it would make a workable
model for predicting future trends in blast furnace conditions.

Fig.11 Correlation between after 1 hour actual molten iron tempera-
ture and estimated molten iron temperature
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