NIPPON STEEL TECHNICAL REPORT N0. 76 MARCH 1998

Component-based System Generation
and System Testing Suppot Tools

Abstract:

UDC 681 . 3
Nobuo TAKAYANAGI®™ Chisato KOTANI™®
Shinya KUBO™® Masahiro NOGUCHI™

The authors have developed an application generator and a system testing tool to

support rapid development of application systems with graphical user interfaces.

The former tool can generate application systems through component synthesis,

adopting object oriented technology, while the later tool can realize automatic sys-

tem test execution based on automatically generated test specifications. These tools

enable software engineers to efficiently build application software, generate its speci-

fications, and test it, by visually combining prepared program components (i.e. ob-

jects).

Introduction
The trend of down-sizing along with open standards of computer
systems demands construction of a more user friendly system. With
the current remarkable progress of hardware and software, several
version upgrades a year are not so exceptional.

In this situation, the demand for software development has been
further raised, increasing the technology and loads necessary for
development such as shortening of developing periods, firm con-
firmation of specifications at initial stage, quality enhancement, and
installation of easy-to-use and easy-to-understand GUIs (graphical
user interfaces). Therefore, development support tools are very
important, particularly for software development for GUI based
application systems.

This report describes a component-based system generation”
tool and a system testing support tool which were developed by
the authors as well as collaborated matters. The former is a support
tool for prompt and easy construction of GUI based application
systems. The latter is a support tool for testing them efficiently
and integrally.

1.

2. Development of GUI Applications

Development of GUI applications usually has the following

characteristics.

1) GUI components™ have rather high reusability and its range can
be expanded if the target domain of the system is further analyzed.

2) GUI design has a large degree of freedom with numerous
alternations. This requires a repeated trial and error process.

3) An integration of GUI components and programs called there-
from can be patternized.

4) Integration work itself is very difficult and is likely to induce
defects in it.

At development, if the system constructing elements can be
converted into components in advance and its assembling method
defined by system developers for automatic synthesis, the appli-
cation system can be assembled promptly and with excellent results
in quality. This makes for very effective development.

This enables the assurance of high quality because no human
activity intervenes in the component integration logic. A component
itself is raised in quality in repeated reuse. However, a system
structure composed of high quality components does not always

" Electronics & Information Systems Div.

‘@ Ohita Works and Electronics & Information Systems Div.

*1

System generation: The system in this case is a software system as
a program assembly to realize any processing on a computer. System
generation means automatic system generation (partial) using some
tools.

-75-

2 GUI component: Program components to produce basic elements for
constructing a GUI such as buttons and menus.

NIPPON STEEL TECHNICAL REPORT NO. 76 MARCH 1998

assure high quality for the entire system. This is because some
defects are found only after they are assembled. Therefore, system
testing is requisite for those with high quality components assembled.

Meanwhile, system testing for the GUI-based system is very
difficult. This is primarily a result of the characteristics of an event
driven GUI mainly carried out in dialogue processing with users.
In another words, the number of resultant test cases expands
exponentially due to high freedom of GUI for user's operation.
Therefore, a test tool is strongly required to provide automatic
testing as far as possible.

Automatic testing greatly depends on whether to give the test
target specification correctly and in detail. If the requirement is
given at the system generation tool side, the automatic testing is
drastically enhanced.

Component-based system generation and system testing support
tools, if realized, allow construction of a high quality system in
a short period. The authors, therefore, have developed a component-
based system generation tool and a system testing support tool.
These tools are aimed at developing applications which can operate
on UNIX™ and X Window Systems™. Linkage of both tools is
expected for efficient operation from system generation to testing.
These tools are described in the following sections.

3. Component-based System Generation Tool
3.1 Outline

The tool for software assembly in graphical environments
(hereinafter referred to as SG) constructs the target software by
assembling components on a GUI environment. The SG enables
an operator to generate not only the component synthesis appli-
cation system but also a source code™ and specification document
automatically for prompt system generation under the GUI envi-
ronment. The tool deals with two kinds of program components™

including a GUI structure component (GUI component) and an
application logic component (application component). The tool is
very different from a GUI builder in that GUI components are
equally treated as application components. The tool has also a
message delivery function, called a message link, to transfer between
components. The function can define the system action by setting
this message link. This method has an advantage that a layered
structure is naturally constructed with excellent extensibility and
maintainability because GUI components are separated from ap-
plication components, and their connection is expressed by the
message link. Additional characteristic not seen in commercial tools
is the inclusion of a function to produce specification documents.
Fig. 1 shows an outline of the functions and processing flow.

Application range to be produced is difficult to explain because
it depends on components to be used. For example, a factory
automation system requires meter components and chart compo-
nents as GUI components, and signal data input/output components
and control logic components as application components. For
instance, an office automation system requires text input/output
components and fast search components, and a financial system
needs label components and database connection components
specified for date and money expression. It is important to prepare
high quality components suitable for each application field. In fields
where many wide use components are prepared, productivity
improvements enhance more effectively. Fig. 2 shows an example
of SG monitor. SG itself is prepared by SG.
3.2 Function

The SG has four major functions: an editing function to select
components to set messages, a component registration function, an
automatic generation function of source codes, and an automatic
generation function of specification documents. These functions are
described below.

Component
i management
‘{(component library)

Systcm during producmg

Editing

Input/output
function of
definition

Message definition

Layout definitio
file

Specification document

Component registration| generation

Source code generation

Specification
document

Makefile |

gmonitor structure
iagram, state
transition diagram,|
etc.)

Compiler

Source code |

<

Execution code

Execution

Fig. 1 Outline of the function of SG and process flow

UNIX is the trademark exclusively licensed by X/Open Company Limited
applied in the United States and other countries.

X Window System is the trademark of The Open Group.

Source code: Program expressed by a programming language. It is
written by a programming developer. The source code itself cannot

-76 -

be operated and must be converted to an executable format for a real
operating program.

Program component: Component using wide use elements or parts in
the program.

*

NIPPON STEEL TECHNICAL REPORT NO. 76 MARCH 1998

1]

Fig. 2 Example of SG display

(1) Component synthesis and operational definition

As mentioned above, the system's structure and operation can
be defined by assembling GUI components and application com-
ponents and by setting message communication between compo-
nents (Fig. 3). This enables construction of the system operating
actually only by assembling existing components.

Practical operation lays out GUI components with a mouse on
the monitor where each component is connected by a line to set
messages between components. Almost all operations are available
simply by mouse. .

(2) Additional registration of components

Additional registration of components by users enables the
accumulation of components in the target domain. For component
generation support, an exclusive use generation support tool is
provided for GUI component generation. For application compo-
nents, a function for automatically generating an interface part to
convert components is provided so as to deal with functions prepared
by users as components.

(3) Operational check during generation

When generating a prototype, "generate as testing" is required
first, so that its operation can always be checked anytime during
application generation.

(4) Automatic generation of source code
Most general GUI builders have a function for generating only

Component

Méssage

- Vi i Setting part of
Condiion part— YA 5178 — GEnEEon °

Message link

Fig. 3 Message propagation between components

a source code skeleton by adding necessary parts by users as a
prerequisite. The SG generates all the source code (C++"7) which
can be compiled as it is instead of the skeleton. As an exceptional
unique function, it can generate the source code removing the GUI
part. This function is mainly applied for control system develop-
ment. The control system has high reusability of control logic and
can integrate components in the specified pattern, and makes
prototyping at design important, so that this is an effective field
for component-based system generation. Hence, the authors have
aimed to make the control logic on SG extend from design to actual
installation, and then in practical operation at generating a compact
and high performance system by removing unnecessary GUIL
(5) Automatic generation of specification documents

The SG has a function for automatic generation specification
document of the system. This enhances maintainability even in
systems prepared on a trial and error basis. In addition, it also has
a function for generating a test specification document for the
system testing tool. This enables automatic ganeration of a test
script for the system testing tool described in the next chapter.

4. System Test Support Tool
4.1 Outline

This system testing tool (hereinafter referred to as ST) is a tool
to support effectively the GUI testing and system testing for the
client program operating on X Window Systems to improve pro-
ductivity and quality of the testing process.

The ST can be applied to the GUI testing and system testing
in various shapes for individual purposes, and in particular it can
exert its effectiveness at the stress testing™ and regression testing™.

Conventional commercial tools use the specified GUI library
or are restricted to an operation on the X server expanded for testing
support. The ST is characterized by excluding such restriction. It
can automatically generate the test script for verification of speci-

"7 C++: One of the programming languages.

"8 Stress testing: A test to clarify the maximum load condition where
normal operation of the test target system is not available. For example,
it can access 100 or more terminals simuitaneously for an issuing system
which can be accessed from 100 terminals simultaneously.

* Regression testing: A test to check whether the function available before
modification is degenerated or not due to modification.

NIPPON STEEL TECHNICAL REPORT N0. 76 MARCH 1998

fications from the specification for system to be tested, which is
an exceptional characteristic not observed in other commercial tools.
4.2 System structure

The ST is composed of four sections : a capture and play back
section for capture and play back of mouse and keyboard operations
and for verification of specifications ; a script generation section
to generate automatically verification script for the specification
on the basis of the specification to be tested; a specification browser
to display the specification to be tested graphically on a CRT monitor
and a script editing section available for an interactive operation.
The capture and play back section is composed of three sections;
a function for recording operations; a function for playing back
operations and a GUI for the entire tool.

Input for the ST includes three kinds of specification files for
the test target and the test script file. Output from the ST contains
the testing result report. The intermediate generation files within
the ST are the state transition diagram*'® data file and structure
diagram data file. Three kinds of test script files are used: a file
based on the operation record; a file generated automatically and
a file prepared by programming. The test script file is supplied
from the operation record, automatically generated one and pro-
gramming. The relation is shown in Fig. 4 (script editing section
and GUI section are not shown in the figure).

4.3 Functions

Main functions installed in the ST are described below.
(1) GUI operation capture and play back function

This function supports the testing work, which is first required
in automatization of GUI testing. Concretely, the function records
operations for the test target with a mouse and a keyboard as the
test script and plays back them automatically at any time without
any human operations. In order to play back, the test script is
available directly prepared by programming instead of recording.
(2) Script automatic generation function for verification of speci-

fication

This function supports the testing design and testing case
generation work, but it is left to the last in automatic GUI testing
and the system testing because of the difficulty in realizing it. The

Programing Test script

ST realizes automatic generation of the test script, which includes
all of the states and state transitions defined by the structure speci-
fication™"!, the state transition specification'? and the layout speci-
fication of the testing target. Concretely, on the basis of specification
for application to be tested, this function causes the application
to carry out an operation collecting the state transition. This enables
study of the state of application during operation for verification
whether it meets the specification. :

(3) Testing target specification browsing function

This function displays graphically the structure specification and
the state transition specification for the application system to be
tested, allowing easy understanding by the test personnel. Con-
cretely, it is a function for displaying the structure specification
and state transition specification on the monitor as a graphical view.
This enables a test personnel to build an image easily on how to
construct an application, what components to use and how to transit
the state.

(4) Interactive execution function

This function supports the. testing data generation, testing
execution operation, and the test result judgment by supplying visual
information to help deepen the understanding of the test personnel
during testing on the testing contents. With an exclusive test script
editor, the script content can be extracted as an arbitrary unit during
operation for interactive operation with the testing target.

4.4 Test script language

This tool understands a command sequence written in the test
script to execute automatically the GUI testing and system testing
according to the contents. It also enables the ST to conduct
automatically all human operations to the testing target by com-
bining appropriately tens of kinds of prepared commands.

The test script language developed for the ST is an expanded
Tecl language" characterized by assembling the commands specified
for GUI operation and testing operation and by improved readability
and maintainability of the test script due to an object based notation.

Fig. 5 shows an example of the test script which can be carried
out by ST.

. . Specification to be tested
Script generation

file

N
N
N
<

section N

Structure
“| specification

QA

Capture and play back section

\lile

GUI operation

Capture
function

Play back
function

State transition

diagram

. | State transition

L 1™ Mimic operation

Graphical display Test result

report

Specification browser SO ARt

Structure
diagram

specification

|
I

|

! Individual state|
| " specification

| file
I

I

I

I

7

N

Fig. 4 Entire ST schematic diagram

*10 State transition diagram: A diagram expressing the state transition between
states using nodes and edges.

*!' - Structure specification: Specification in structure showing how to
construct application and what program components to assemble.

2

? State transition specification: Specification showing that the application
to be tested is transited by which input (event) from which state to
which other state.

NIPPON STEEL TECHNICAL REPORT N0. 76 MARCH 1998

Read data from a file to input to a text area.
MoveWin @(Sample) @(100,0) t100 # Setting of GUI initial layout
Raise @(Sample) t1000 # Set
set fd [open Sample.dat r) # Open data file
set WTIME 100 # Event occurring time interval
While {! [eof $fd] } { # File processing loop
for {set i1} {$i<10} {incri}{ # Read a line to data
gets $fd data
if {$data == "Right"} {set product "R"}
if {$data == "Left"} {set product "L"}
Click the ith botton in the window
Click @(Sample.button$i) t(SWTIME
Type data string to the ith text of Sample window
) Type ‘$data’ @(Sample.test$i) t10

}
Closed $fd
exec echo Sample_finished >@ stdout

Close the file
Finishing message output

Fig. 5 Example of test script file

5. Linkage between Component-based System
Generation Tool and System Testing Tool

As mentioned above, assembling of components, each being
of assured quality to some extent, does not always assure total
quality of the assembled result. This requires, therefore, the system
test to detect defects which can be found only after assembling.

In system generation by SG, information is held in the SG side
not only on the GUI structure but also on state transitions, which
delivers correct information on the system to the testing tool.
Therefore, it is possible that the testing specification can be prepared
automatically at the SG side based on which the test script is
generated automatically at the ST side. Concretely, at the SG side
as shown in Fig. 6, the structure specification, state transition
table, and individual state specifications are generated automatically
for transmission to the test tool side. This realizes automatic system
testing for verification of the specification in the form containing
the state transitions.

6. Applying Situation

The SG has been transferred so far to several platforms and

System generation tool

Editing
function

used for construction of multiple real systems. For example, at the
Yawata Works of Nippon Steel Corp., the SG has been utilized
from the beginning of development. At present, the SG has been
expanded to a control system constructing tool GOOD? which
contributes to the control system development as a powerful tool.
At the Ohita Works of Nippon Steel Corp., the ST was used to
develop a thick plate shipping order generating system® to reduce
the work load when shipping orders of thick plate and to improve
the accuracy of order shipping. Since November 1995, this system
has been operated satisfactorily and smoothly.

The ST is used for software development by the authors' group
even during developing stage and executes not only quality as-
surance of the software but also detection of defects of commercial
GUI libraries. Typical applications for practical projects include
"Sumitomo Bank Off-balance project", a large-scale system
development with two million steps contracted by Financial So-
lutions Department of Electronics & Information Systems Div. This
project uses repeatedly ST during GUI testing and system testing,
contributing to detection of defects and shortening of the testing
period. '

7. Conclusions

This report described two tools for supporting construction of
GUI-based application systems. The SG generates systems by the
component-synthesis and ST automatically performs system testing
in part. Linking both tools has successfully realized support from
system generation to testing to some extent. These tools have been
applied on a trial basis in Nippon Steel Corp. even during the
development stage to reflect experience in actual system construc-
tion to the next stage with reasonable evaluation.

References
1) Ousterhout, J.: Tcl Overview. University of California at Berkeley, 1993
2) Sekiguchi, O. et al.: Shinnittetu Giho. (364), 19 (1997)
3) Miyanaga, Y., Kawabe, T.. CAMP-ISIJ. 9 (5), 957 (1996)
4) Nikkei Computer. (412), 156 (1997)

GUI specification
document

Structure
specification
e

System testing support tool

Operation
play back
function

generating

State | Script

transition

specification
ile

generating
function

Individual
state.f .
specification
e

Source
code
@ﬁ —=1 Application

Specification| Operation
verification capture
script script

Test result
report

Fig. 6 Automated system testing

-9 -

