NIPPON STEEL TECHNICAL REPORT N0. 76 MARCH 1998

UDC 681 .3

Software Maintenance Support Tool Set

Abstract:

Masahiro NOGUCHI® Hiroaki KIMURA'™®

The software maintenance support tool set developed by authors provides soft-

ware engineers with the information that helps program maintainability enhance-

ment and repair activities, rendering software maintenance more efficient, which is

one of the most important topics to the organizations responsible for information

systems in enterprises. This tool set includes program analysis engines based on the

most recent compiler technology with our own original algorithms, providing inte-

grated maintenance aid for quality built-in in development, and program compre-

hension and impact analysis during program repair. Further, the architecture of the

tool set is designed such that it can be tailored for multiple procedural languages

with relatively small amount of efforts.

Introduction

With the “Year 2000 problem” as a trigger, the enhancement
of software maintenance efficiency has become a big concern in
recent years. To meet this need the authors developed “quality
enhancement by static testing” (hereafter called QS) as a tool set
to support software maintenance. This paper first describes the basic
concept of computer support for software maintenance, and then
the main functionalities of QS and its system architecture.

1.

2. Computer Support for Software Maintenance
2.1 Software maintenance

Development cost tends to be the main point of focus regarding
software cost. It is known, however, that the lifetime of business
applications is about 10 years on average”, and about 40 to 75
% of their life cycle costs fall into maintenance?®. Therefore, with
the increase of software assets, the budget for maintenance sup-
presses the development budget in many cases, and the ratio between
maintenance and development budgets are said to be 1:1%in many
of the large enterprises and organizations. Based on this recognition,
improvement of software maintenance performance needs to be
seriously considered to curtail maintenance cost.
2.2 Computer support for maintenance

Maintenance efficiency can be enhanced by providing main-
tenance staff with the means to help them understand existing
programs and the means to repair programs as correct as possible.

" Electronics & Information Systems Div.

-69 -

Computer support for software maintenance is classified broadly
into support for enhancing maintenance quality itself in the de-
velopment phase and support for repairing programs, which are
described in the following sections.
2.2.1 Supporting maintenance quality enhancement

The first step for improving maintenance performance is to
enhance the maintainability of the targeted software; that is, making
software easier to understand and modify. For these purposes,
software needs to be designed in such a way that resulting com-
plexity of programs will be minimized. One reason is that com-
plicated programs force users to think and remember many things
at a time in order to understand the program. Another reason is
that due to a complex and entangled data flow, repairing just one
part influences many other parts, some of which frequently emerges
at unexpected locations. As metrics indicating complexity of pro-
gram, cohesion and coupling® showing qualitative complexity, and
cyclomatic number® indicating quantitative complexity are proposed.
Many examples in the literature point out the relationship between
these metrics and maintainability, and the relation between these
metrics and program decay>¢?. Therefore, mechanically measuring
and gathering these values and feeding them back to software
development processes allows the improvement of maintainability.

Next, from the viewpoint of enhancing maintenance quality, it
is also important to develop programs according to programming
rules possessed by software developing organizations. In order to
assure maintainability, these rules have usually been created after
thorough discussions. Programs developed according to description

NIPPON STEEL TECHNICAL REPORT NO. 76 MARCH 1998

rules standardized by an organization help people accustomed to
these rules comprehend easily. Conventionally, compliance to the
rules has been improved by personnel’s actually reading and
inspecting the programs. However, many rule violations can be
automatically detected in principle. In this point, computer support
activities are expected.

As frequent repair deteriorates program quality, it also mean-
inglessly increases the complexity of programs. One of the main
reasons is that source code fragments written by one person can
not be fully understood by others, thus the influence of deleting
the code on other parts might not be correctly tracked down. In
such a case the code to be deleted is often left untouched, and
some logic bypassing the code is made to be built-in, resulting
in leaving unnecessary code in the program. Support for detecting
such redundant code is also important.

2.2.2 Support for program repair work

Major maintenance activity includes elimination of defects
inserted in the development stage, partial program improvement,
or program modification to suit an operating environment. Its typical
process is: the current function of target software is comprehended,
the part to actually be modified is extracted, the modification is
designed, and finally the program itself is analyzed and actual repair
is performed, based on enormous volume involving at least a few
thousand pages of design documents. Since a maintenance staff
usually differs from a program developer, understanding existing
programs involves a heavy work-load. It is often said that more
than 50 % of maintenance activities are the process of understanding
the program'®.

The first step to understand a program is to refer to its design
documents, but the document often differ from what the program
represents. Furthermore, no such document exists in some cases,
requiring direct reading of the program to understand its contents.
Experiments have shown that information on program structures
and variables are most often referred to'V. Therefore, showing this
information to maintenance staff in an easy-to-understand style is
important for computer support.

Program modification work needs extraction of parts to be
modified and their secondary influenced parts from program origi-
nally written by a third person; however, manually performing this
process is extremely hard. Computers are expected to precisely
analyze the dependence among program elements and to show the
impact of modification.

3. Software Maintenance Support Tool Set QS
3.1 Overview of QS

QS aims at computer-aided software maintenance based on static
analysis, program analysis without executing programs. This tool
set provides lifecycle software maintenance support, for quality
built-in in development phase to program comprehension and impact
analysis in maintenance phase. This tool set provides GUI (refer
to 3.3.1) to show users results of analysis in an easy-to-understand
way, because the results involves large volume of information which
is often mutually related. QS is now available in two versions which
realize essentially the same functions, one for C language and the
other for FORTRAN. Fig. 1 to 3 are screen examples, showing
parts of analysis results by applying QS for C language to freeware"'
called f2c™.

3.2 Overview of each tool
3.2.1 Support tool for maintenance quality built-in
Metrics measurement tool

This tool automatically measures the complexity metrics such
as cyclomatic number, cohesion, coupling and the size metrics such
as lines of code (with or without comments) and the number of
tokens. The results will be stored in a file in a certain form, enabling
comparison to the quality reference value or statistical analysis
results.
Programming rule checker

This tool checks whether or not targeted programs comply with
the C programming rules prescribed by Systems R&D Center in
Electronics & Information Systems Div., Nippon Steel Corporation.
The programming rules include identifier naming rules, declaration
rules, type integrity rules, constant number usage rules, operator
usage rules, control structure construct rules, data flow rules*?, and
commenting rules. The tool checks about 40 of above rules whose
compliance can be automatically checked. Data flow shows anoma-
lous execution paths, as well as variables causing data flow anomaly.

This tool can be launched from an editor, making it easy to
relate a warning message with a program line where noncompliance
is detected. Moreover, help message can be displayed on a WWW
browser. Fig. 1 shows an example.
Redundancy checker

As mentioned before, redundant code is a result of program
delay from frequent program modification. The tool is able to detect
the execution statements and the input variables, both of which
have no effects on output of the procedure to which they belong.
Though such code has no effect on execution results, it not only
hinders programs comprehensibility and worsens maintainability,
but also does it accumulate every time repairs are performed.
Extraction of such redundant code by this tool, and its elimination
prevent programs from such decay.
3.2.2 Program repair support tool group
Structure analyzer

This tool shows program structures in a simple way as program
comprehension aid. It graphically displays call graphs showing
interprocedual caller-callee relationship, and flow graphs showing
intraprocedural control structures. The tool also displays source
code in a source code browser. Since these browsers work coop-
eratively, relationships among each graph element or source code
can be easily obtained by mouse operation. For example, by clicking
a procedure node in a call graph, a flow graph and source code
of corresponding procedure are displayed. Then, clicking the node
in the flow graph causes the color of the corresponding source code
fragment to change. Similarly, specifying any part of source code,
the corresponding node in the flow graph changes its color.

Since complicated program causes the corresponding graphs to
be also complicated, making it hard to comprehend, this tool allows
users to change graph layout using a mouse, or to cut out only
related segments (for example, select all the procedures called by
a procedure). Fig. 2 shows an example of the structure analyzer
screen.
Maintenance document generator

This tool automatically generates hypertext documents of various
information obtained through program analysis. The document

*1
*2

Free software: Software delivered free of charge.
©1990 AT & T Bell Laboratories and Bellcore.

-70 -

#3 Data flow: Relation between data definition and reference. For example,
referencing data without defining the value of them is called “Data

flow anomaly”.'?

NIPPON STEEL TECHNICAL REPORT NO. 76 MARCH 1998

EERE A O FROHERE ;

r',|

.) oA U5 OHIREECEBENA TV x 7 b CRLCOAEBENT S, i

iate calo(doubles dbl, unsigned longe wlng) 205 V5 HEICIRIER AIETIBE(CC NS ERT 3 XFILIES }s‘

i seslts L A VS RLHSEHD 2 L EISTIZEN, MBS0 ROFTESS l

i b, chs NBATIz 7 bADRS UFOBHHAF, Hfe, 4 V7 hEI LA i

RO A EGT BECE, ENSEEL L83, R V2 HEFIOTH ;

0 i@l ¢utng { EBIT BIHCIL, EOLIIEHGT 2IEFOLE ERLTHE, Al
bl e = (int) wabls Uredto T, SHLUADEIIMMER SIS 5/ 0fT/3 5 & TEhL

. BleLT, wa /90)1:532(-. KFFraa-Fe, "ch’&l"l%ﬁ&t\&?(._
BEBELED—- FERY,
if(buf = gféchar() =70¢) {

ch = buf -0 M o> PR & R B S TR T — K <o %/

R e e e e e T s

; . deno, o 5(C) 23— nt 2(16]:
R W.C. 20,V '

onnios 210> 1 LG, SORORHL C 472 TLYB, A L
“deso, ¢”, line 34: Eﬁm W, common, 3, V4_1: int a_ptr = a; l
u_lng (&, AET - |

unsigned long ﬂﬁ‘b;u’]\’c‘fﬁﬁ int BUCHEERY(CTRASY 11 (a_otr > z_ptr) A& COHINIEMERR %/ |
"de%clihg&?MWCSV‘}I' . i
we ? =

wnsigned lorg EANSRL ZHER int BICEERAYICIRAE Y

/- WEBRCEIFT R ERL<LEHK I—F - %/

:élgm.c , Line 36: E%Elﬁ w common, 8, V4_1: struct s {

JREET- cast int z[16];
double BAS int Algﬁﬂmﬂkmﬁéhé

"demo, ¢”, line 39: BEHE: W, common, 6,V4_1
SEHER/FUCHNT, buf = getchar() = ¢ la“ int BOMERY.,

€, 3 %03 Fos Josu |, C, 5,
tfaame, blkdfname, pl_file, p!_filebak, sortfname);

static char ¥
caae(sftichar *5,

char *b, *50;
intg

b=sd=g
while{c = *si+)
lf(t:=I ki

1f(-—:<50+3llr[2] =
N(fe="—s) =1 &&u-'F))(
infname = s0;

Fatal("file name must end in f or F");

215 [set_externs ()
6

217 |/* Adjust the global flags according to the cammand line prameters */
8

219 if (chars_per_wd > 0) {

220 | typedze{TYADDR] = enza(TYLONG] = typesize{ TYREAL] =
21 typesizef TYLOGICAL] = chars,_per.

222 | typesize[TYDREAL] = typme(TYCOMPLEX] charg per_wd << I;
223 | typesize{ TYDCOMPLEX] = chars_per_wd <<

Fig. 2 Example of structure analyzer screen

-71 -

NIPPON STEEL TECHNICAL REPORT N0. 76 MARCH 1998

T

FigeE pushet! OALTNEER

o ADEW—E
© blkleval (CriEEs)
o code (RFREHR)
o ctlstack (kg
o lastetl (xigar)
o maxetl CrmgEg)
o EHTR-

o blklevel GrugEm)
o ctlstack G
o JRIC L DA
» BHUEC L ST

(a) Example of procedure input/output page

ctistack (DGR

» Ri(struct CtiframeX) D»JLA0-7 Y7 —I8EL

B =T
o Inlt.c, line 188

e extarn ETEDEFF
o defs.h, 1ne 260

o RS SN
o exec. c(pushctl), I1ne 80
© exsc.c(popctl), 1Tne 102

o Init.c(fileinit), ling 266
o inlt.c(procinit), line 373

o {EH BRI
exec. c(axslif),
exec. ¢ (pxelse),
exec. ¢ (exslse),
8xac. ¢ (exend|f),
.C
. C

[e]

exec. ¢ (sxendlf),
pushctl),
. C(pushctl),
exac. ¢ (pushetl),
sxec. ¢ (popctl), |
6xec. ¢ (exdo), | ing

©
[e]
(9]
(o]
(]
0
o
o
o

(b) Example of variable information page

Fig. 3 Example of created maintenance document

generated using this tool can be seen on a typical WWW browser,
enabling navigation of information on files, procedures, variables
and types with mouse operations.

Fig. 3 (a) shows an example of input/output information page
of a procedure named “pushct]l”. Links to the information on the
input/output variables (argument and global variable) of the cor-
responding procedure are indicated by underlining. By clicking
“ctlstack™, the browser jumps to the page related to a global variable
named “ctlstack” (Fig. 3 (b)). Furthermore, by clicking a type named
“struct Ctframe”*4, it proceeds to the page linking to the location
of the source code at which this type is defined, and to the in-
formation on other variables of the same type. Similarly, links
anchored as “variable declaration location”, “variable definition
location”, and “variable reference location” list links to the infor-
mation pages on the corresponding procedures or program texts.
Such link navigation provides users with information on how
variables are used in the program, giving useful knowledge in
repairing the program.

Impact analyzer

When a variable in a program is specified, this tool finds code
lines whose execution result is directly or indirectly affected by
the value of this variable. It also finds a program fragment which
creates the value of the specified variable at the specified line;
executing this fragment is guaranteed to produce the same value
for the specified variable as when the whole program is executed.
This functionality allows sure separation of the program fragments
that are impacted by modification and those that are not. It also
enables to check if program is correctly repaired by finding program
fragments creating output variable values.

3.3 System architecture

QS was developed in C++ language, and runs under SunOS™*3
version 4.1.3 or, greater or 5.5 or greater. To develop QS, an object-
oriented application framework was first constructed, then each tool
was developed based on the framework. This gives advantages in
not only maintainability, but reusability. In QS for C language, for
example, about 90%, on tool average, of its source code is reused
from the framework, showing how large this effect is. The following
sections describe each component of the framework.

3.3.1 GUI (graphical user interface)

InterViews'?, a free software, is adopted as the GUI core library.
Using this software, diagram drawing libraries have been devel-
oped. A diagram is a grammar-based graph structure consisting of
figures and strings, and it is used to visualize complex information.
In this library, users can freely define figure types, rules of logical
structure such as joints or inclusions among these figure types, and
layout rules, and display figures in diagrams. This library is used
to draw call graphs and flow graphs.

3.3.2 Communications
Interprocess communication is used for cooperative operations
among browsers as described in the structure analyzer section. This
cooperation mechanism has the following characteristics.
¢ Processes have no master/slave relationships and deliver mes-
sages one-way.
¢ No connection is established between sender and receiver
processes when communicating.

« Receiver process may not have activated when a message is
sent. In this case the receiver process is expected to automati-
cally be activated, initialized, and then receive the corresponding

*4 Logo marks of Netscape, Netscape Navigator, Netscape Communicator

are trademarks of Netscape Communications Corporation in the US.

-72-

*5 SUNOS™ is a trademark of Sun Microsystems Inc.

NIPPON STEEL TECHNICAL REPORT N0O. 76 MARCH 1998

message.

* Change of message sender/receiver relationships between pro-
cesses takes place frequently when developing tools.

To realize this mechanism, LINDA', a shared memory type
communication model, has been adopted, and then a library
implemented with this model has been developed. A class which
totally manages the relationship between message types and sender/
receiver processes has been added to the library, realizing the
automatic activation in the receiver process, and making it easy
to change the message sender/receiver relationship.

3.3.3 Analysis function

The core of QS consists of the data structures such as call graphs,
flow graphs, program-dependence graphs'®, and the program analysis
modules including the data flow analysis'® and program slicing'”
with alias analysis'® using state-of-the-art compiler technologies.
Furthermore, the core employs our own algorithms aiming at
enhancing analysis accuracy and increasing processing speed.

Several procedural languages*S are currently used in Nippon
Steel Corporation. Considering possible future needs for tools like
QS, it is desirable to easily modify QS to be applicable to such
languages. However, since grammars are different in these lan-
guages, so are parse trees*’ generated by corresponding parsers*®,
Accordingly, analysis modules, which utilize parse tree information,
are required to be developed for the each language.

In QS, parse trees access is abstracted and is provided as a
single interface as shown in Fig. 4. This mechanism is called
“Accessor” and only through it all analysis modules can utilize
the syntax analysis information. As a result, the differences in
grammars among languages are absorbed in Accessor. This scheme

Legend

i Analysis /
results D
Data
r H \:I Functional module

Program analysis module

Accessor common interface

Accessor Accessor Accessor
for C language for FORTRAN for xxx language
C language FORTRAN xxx language
parse tree parse tree parse tree
Parser for Parser for Parser for
C language FORTRAN xxx language

Fig. 4 Architecture easily handling multi-languages

allows QS to handle more than one language without changing
the analysis modules. Investigation of several tools*® for C lan-
guage utilizing Accessor shows that about 70% of their source code
is in common with corresponding FORTRAN tools, and most of
the remaining, 30%, is the implementation part of the parser and
Accessor.

Conclusions

This paper provides an overview of QS, a tool set to support
maintenance activities. Besides QS enhancing program maintenance
quality, it effectively supports maintenance activities by offering
appropriate information to maintenance staff. The QS has already
been delivered to several divisions of Nippon Steel Corporation,
and is being utilized. QS for C language is installed in NSCASE"*10,
the standard development environment in the process control field
of the steelmaking business.

Future plans call for a redesign of the mechanism and devel-
opment of an algorithm to provide more accurate data flow in-
formation, usability improvement, and extend it to handle other
languages. '

4.

References

1) Tamai,T., Torimitsu, Y.: Proceedings of International Conference on
Software Maintenance. 1992-11, p.63-69

2) Vessy, L., Weber, R.: Communications of the ACM.26 (2), 128 (1983)

3) Jones, C.: Assessment and Control of Software Risks. Yourdon Press,
1994

4) Yourdon, E., Constantine, L.L.: Structured Design. Yourdon Press, 1979

5) McCabe, T.: IEEE Transactions on Software Engineering. SE-2(4), 308
(1976)

6) Card, D.N. et al.: Proceedings of 8th International Conference on Software
Engineering.1985, p.372-377

7) Korson, T.D.,Vaishnavi, V.K.: Empirical Studies of Programmers.1986-
6, p.168-186

8) Troy, D.A.,Zweben, S.H.: The Journal of Systems and Software. 2, 113
(1981)

9) Selby, R.W.,Basili, V.R.: IEEE Transactions on Software Engineering.
17(2), 141 (1991)

10) TAKESHITA,T. : Program Maintenance, Reengineering and Reuse.
Kyoritsu Shuppan, 1992

11) Mayrhauser, A. et al.: IEEE Transactions on Software Engineering. 22
(6), 424 (1996)

12) Fosdick, L.D., Osterweil, L.J.: ACM Computing Surveys. 8(3), 305
(1976)

13) Linton, M.A.: InterViews Reference Manual. Stanford University, 1992

14) Gelernter, D.: ACM Transactions on Programming Languages and
Systems. 7 (1), 255 (1985)

15) Ferrante, J. et al.: ACM Transactions on Programming Languages and
Systems. 9 (3), 319 (1987)

16) Aho, A.V. et al.: Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986

17) Weiser, M.: IEEE Transactions on Software Engineering. SE-10(4), 352
(1984)

18) Landi, W., Ryder, B.G.: Conference Record of the 18th Annual ACM
Symposium on Principles of Programming Languages. 1991, p.93-103

19) Nishida, T.: MID/IEA Joint Meeting by The Institute of Electrical
Engineers of Japan, Feb. 1997

*6 Procedural language: A programming language which describes pro-
grams using procedures as basic units (for example, functions for C
language, and subroutines for FORTRAN.) COBOL, PL/I, FORTRAN,
and C language are typical examples.

Parse tree: Analyzing a program written in a programming language
by comparing it to its grammar is called a syntax analysis. The data
created in this analysis usually has a tree structure, which is called
parse tree. This tree also includes symbol tables in this paper.

*7

-73-

*% Parser: In this paper, it denotes a component executing both lexical

syntax analysis.

Metrics measurement tool needs to closely refer to the language grammar
in its implementation. Therefore, it does not use the Accessor, but
directly accesses the parse tree. Such tools are not included in this
investigation.

*10 NSCASE is a trademark of Nippon Steel Corporation.

*9

