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Development of the Plate Finishing Control Support System
Using the Planning Expert System Building Tool K1

Toshimitsu Baba™*'

Abstract:

This describes the planning expert system building tool “K1” and the
Plate Finishing Control Support System (PFCSS) developed by Nippon
Steel using K1. K1 has an original inference engine able to reason fast
enough for a large-scale, advanced-function knowledge base by utilizing
an original pattern-matching algorithm. A new knowledge base
architecture makes positive use of the object-oriented approach while
representing knowledge in the conventional if-then format. The
descriptiveness and processing efficiency of production rules in the rule
base are improved by allowing C++ code, an object-oriented languages.
K1 itself is also implemented in C++ for portability among different
platforms. The PFCSS is designed to efficiently control the flow of plates
from the upstream rolling line to the downstream finishing line in
accordance with real-time operating conditions. Through the development

of PFCSS, K1 has achieved greater benefits than other commercial expert
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system building tools.

1. Introduction
Improving in productivity and efficiency is an important
challenge for large-scale manufacturing companies. To meet this

challenge, the manufacturers have widely adopted computer-

integrated manufacturing (CIM). The steel industry has long
aimed at automating processes by using computers. With the
progress achieved by process technology in recent years, the role
of computers has become ever more important.

While in the conventional CIM environment, computers
basically processed data, today’s computers are required to bring
intellectual judgment to problems. Expert systems are one branch
of artificial intelligence and are designed to perform intellectual
processing in place of humans®. Expert systems rapidly spread
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during the 1980s when low-cost, high-performance engineering
workstations and shells (expert system building tools) appeared.
Early on, the steel industry expected expert systems to be
practical and effective, and therefore aggressively developed
expert systems. During this development, Nippon Steel found that
using commercial shells with the primary objective of versatility
was not effective for solving actual problems within the company.

In 1991, Nippon Steel circulated a questionnaire survey
entitled “Bottlenecks in the Development of Expert Systems”.
The survey targeted inhouse expert systems. The results of the
survey are shown in Fig. 1. Most problems concerned knowledge
representation, user interface, and processing speed. The forms in
which the expert systems are implemented are shown in Fig, 2.
Reflecting the increasing size and complexity of problems, few
expert systems were implemented by the classical rule-based
method alone. In light of the trends of the time, many were
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Fig. 2 Forms in which expert systems are implemented

combined with procedural languages FORTRAN or C, or with
fuzzy logic and neural networks.

Analyzing the expert systems from the standpoint of appli-
cation areas, many of the early systems were analytical-type
systems such as fault diagnosis systems. The Systems Research &
Development Center of Nippon Steel’s Electronics & Information
Systems Division developed the “Diag-Solver” analytical expert
system building shell and used it to build several expert systems™.
Diag-Solver uses simple knowledge representation in diagnosis
and has a flexible inference engine. It can be used by field
operators and is designed for the efficient development and easy
maintenance of practical expert systems.

Planning expert systems have as yet no general-purpose
techniques for solving problems. Hypothetical reasoning (as an
artificial intelligence technology) and optimization and
mathematical programing (as operations research technologies)
are general algorithms for planning expert systems. When

planning expert systems start to solve problems, they encounter
such challenges as limitations in computer memory size and
difficulty in formulating problems. Though constructing practical

" applications is no easy task, there is an increasing need for

synthetic-type expert systems that include planning-type systems.
Because of the above trends, the authors developed their

expert system building tool K1 with powerful object-oriented

knowledge representation and fast inference performance.

2. K1

2.1 Development Goals

2.1.1 Improvement in descriptiveness of rule-based program-
ming language

The production rule in the if-then format uses a knowledge
representation method already popular in the field and is
sufficiently knowledge descriptive to be applicable to the control
and management of future integrated expert systems. However, it
is very difficult to represent an entire expert system using only
production rules. The construction of a practical expert system
requires the combination of structured knowledge and procedural
knowledge. Therefore, the rule-based descriptive language of K1
referred to the object-oriented language C++** and used its
characteristics.

An example of the descriptiveness of structured knowledge is
shown in Fig. 3. In the example, ‘product’ is defined as a
subclass of ‘aPlate’, has its own slots (variables) ‘contentC’ and
‘contentSi’, and inherits the parent slots ‘width’ and ‘height’ and
the method ‘mkdaemon’. The merits of object-oriented knowledge
representation are also manifest in the development phase of
expert systems®.

Generally, in the development phase of systems, specifications
are frequently changed. This tendency is particularly marked in
the building of expert systems. Programming with an object-
oriented language can meet this requirement more flexibly than
programming with a procedural language.

Many of the knowledge representation units of K1 appear as
classes in object-oriented languages, so that the merits of object-
oriented system development can be put to effective use in the
analysis, design, and implementation phases of expert systems.
2.1.2 Compatibilty with existing systems

In actual system environments, many software programs run
on different computers in a mutually beneficial way. When
commercial shells are utilized, constraints often occur in inte-
grating an expert system with an existing system. Most of the
constraints arise from the closed system architecture of the shell

defwmeclass aPlate {
class:
int  counts;
void mkdaemon() {
cout << ++C ounts << "created.¥n";
}

instance:
double width;
double length;
double thickness;

|

defwmeclass productA : aPlate { // Inheritance...
double contentC;
double ....... contentSi

h

Fig. 3 Example of working memory element class



and the characteristics of the language used to build the expert
system.

K1 offers the C++ direct coding function that allows
statements in the general-purpose development language C++ to
be directly described in any desired portions of the knowledge
base. This fusion with the C++ language allows open system-type
expert systems to be easily built. A typical example of direct
coding is given in Fig. 4. The section between symbols ??( at the
beginning of one line and symbols ??) at the beginning of another
represents a statement in C++. The C++ direct coding function is
advantageous in that it can be used not only for integrating an
expert system with an existing system, but also for describing
procedural knowledge in the knowledge base.

Furthermore, K1 is generated as one class of C++ language,
allowing the expert system to be easily controlled from an outside
system by message passing. Conversely, classes defined in C++
can be directly incorporated into the knowledge base by declaring
them as user-defined class types in the knowledge base.

When the user defines a knowledge unit (working memory
element) class that calls for a data structure with quite complex
functions, the user can define the class as a C++ language class
and import it into the knowledge base as such.

In this way, K1 is a flexible means for combining with
existing systems and external modules developed in other
languages.

2.1.3 Fast inference engine

Generally, the function of the inference engine is to compare
the condition part of knowledge (production rules) stored in the
knowledge base with the data in working memory and to fire the
production rules in a chain-like manner. This pattern matching
consumes a huge amount of memory and computing time,
important performance factors in a real expert system. This is the
reason why many researchers have sought fast pattern-matching
algorithms.

Many of today’s high-performance inference engines are
based on the RETE pattern matching algorithm”. The RETE
algorithm is well accepted as a general-purpose pattern-matching
method, but has been improved in various ways and is available
in several variations. The Systems Development & Research
Center developed a pattern-matching algorithm that is faster than
the RETE algorithm and needs less memory, especially for large-
scale combinatorial problems®. This algorithm consists of the
following three internal modules:

DTREE : Digital search
TREE, ONET : Optimized inference NETwork,
CR : Conflict Resolver

rule move

{

$P( product status == unprocessed );

$A( materialA );

$B( materialB );

# ( $A. typeCode == $B. typeCode );

[ $P.deadline ]

=

??(// C++ Direct Coding ...
int remains = $P. counts - 1;
cout << remains<<"remaining.¥n";

??)

modify( $P status = finished );
remove($4); remove($B);

Fig. 4 Example of C++ direct coding
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DTREE reduces the amount of unnecessary pattern matching
for a working memory element. DTREE is based on the idea of a
digital search”. Digital searching originally addressed character
strings alone, but is expanded here for matching the returned
values of functions. ONET performs the pattern-matching process
at high speed using a special network structure focused on
pattern-dependent relations. CR takes charge of conflict resolution
and selects the rule to be fired next from among the working
memory altered by DTREE and ONET.

A unique feature of K1 is that the sort function, the most
basic function for planning and scheduling problems, is used in
the inference engine. Standard rule-based descriptive languages
have no internal sort function and call for the user to create such
a function by combining rules.

The results of inference performance tests conducted using the
rules shown in Figs. 3 and 4 are given in Fig. 5. The tests focus
on a simplified scheduling problem. When the number of
products to be made is input, K1 searches for the combination of
“material A” and “material B” required to make the product, and
provides a solution. In combinatorial problems like this one, K1
has a higher reasoning performance than the RETE algorithm.
This test involves very simple combinatorial rules, but patterns of
this type frequently appear in actual expert systems.

2.1.4 Portability

Expert systems operate on a variety of platforms, from per-
sonal computers to mainframes. For this reason, K1 is designed
for portability as well. K1 can generate the application source
code in C++ language through a dedicated translator, and the
source code does not depend on any particular platform.

Furthermore, K1 itself uses C++ language. For platforms on
which the C++ language compiler cannot operate, C++ source
code is transformed back into C source code. The C source code
can be ported with minor modifications to platforms on which
only the C language compiler operates.

2.2 K1 development environment

The K1 development environment, which consists of five
modules, is schematically depicted in Fig. 6.

2.2.1 Translator

The translator has unique language specifications and
transforms the knowledge base into a C++ source code.
Knowledge represented by production rules is not translated into
procedural knowledge. Instead, each knowledge element is
reconstructed into an appropriate structure. For example, a data
type like the working memory element class (wmeclass) is
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Fig. 6 Development environment of K1

transformed into a C++ language class definition, and the
condition part is developed into a discrimination network. After
rule preparation is complete, adequate processing (for example,
running the make command in UNIX) generates the execution
form of an expert system.

2.2.2 Inference engine kernel

The inference engine kernel consists of two main functions.
The first function is the library that takes charge of drive
mechanisms for such basic functional elements as pattern
matching, conflict resolution, and rule firing. This inference
engine is generally classified as a forward reasoning type. It is
natural that inference is event driven in K1. All working memory
elements are treated as objects in the reasoning process. When the
working memory is updated or when an event occurs, a rule
object is transmitted to execute a rule, producing a new event.

The expert systems constructed in K1 are derived from a
single inference engine class and share working memory. These
expert systems can also be designed to coordinate with each other
while sharing working memory. The other main function of the
inference engine kernel is the top-level function that provides
interface for development phase interactive operations such as
reasoning, tracing, and working memory display.

The user can use the top-level function to trace and control
the execution of the expert system on an interactive basis. Of
course, all expert system functions can be directly accessed from
a user program in detail without using the top-level function.
2.2.3 Editor

K1 also provides an intelligent editor. Dragging and dropping
are effective for entering mutually associated pieces of knowl-
edge. For example, when creating a rule that refers to a working
memory element in the condition section, this condition section

can be automatically generated by dragging and dropping the
working memory element on the screen of a rule editor.

When a correction or deletion is required, the editor auto-
matically performs a syntactic check according to the language
specifications. When deleting an instance of knowledge referred
to from another piece of knowledge, for example, the editor checks
the relationship between these pieces of knowledge and displays a
warning message if necessary.

The two functions shown here, the checking and instantiating
function for generating only syntactically correct rules, and the
entry relation consistency checking function for guaranteeing
consistency among relations, are very useful in maintaining a
large-scale knowledge base. Since the machine on which the
expert system is developed is sometimes different from the
machine on which the expert system is run, a function for
converting the knowledge base between editor and text files is
also provided.

2.2.4 Browser

Many commercial shells provide tools for debugging expert
systems under development. K1 has the above-mentioned top-
level function for controlling the inference process. This is a
minimum necessary function. A dedicated browser is available to
complete an advanced-function, user-friendly debugging envi-
ronment. The browser can also be used to trace inferences while
visually showing such inference process information as the current
status of working memory elements, the state of pattern matching,
and candidate rules to be fired.

2.2.5 Libraries

Although not indispensable for the K1 development
environment, several useful libraries are supported. The list data
structure is the most basic data structure for planning and
scheduling expert systems. K1 does not support the list data
structure. The list classes described in C++ language are provided
as libraries.

The user can import the list classes and utilize them as classes
or use them in the knowledge base. Data exchange between the
expert system built using K1 and another system is also
important. A file I/O class is provided for storing the inference
results in a file or reading the inference results from a file. The
file I/O class can be used to interrupt or re-execute reasoning at
any time while the expert system is being driven.

In recent years, applications with GUI have become
standards. Usually, a GUI-based application and an expert system
cannot coexist because of their different main loop functions. K1
provides dedicated Xlib plotting classes that do not conflict.
Signal handling classes are furnished to emulate the real-time
reasoning required by a control expert system. Once the running
time and period are set, the signal handling function defined in
the knowledge base is called periodically.

3. Plate Finishing Control Support System
(PFCSS)

3.1 Description of system

K1 was used to develop the prototype of an automatic mate-
rial flow control system for use in the finishing process of a plate
mill. The finishing process follows the rolling train and includes
conditioning, painting, and inspection. Since upstream rolling
processing capacity exceeds downstream finishing processing
capacity, the finishing line has a buffer called a yard that is used
to stock plates. A skilled operator at the mill monitors the



material flow from the operation room and controls the flow of
plates in the finishing process.

The following are the four main control tasks:

1) Material flow control (set priority of crane operations and
set flow ratios at confluent points)

2) Stock (work-in-process plate pile) control (meet delivery
dates)

3) Crane control (operate cranes efficiently)

4) Communication between processes and cranes

This control is difficult to perform for the following two main
reasons:

1) Because the situation changes in real time, it is difficult to

predict effects at setup.

2) Priority of the evaluation indexes changes with the situation.
3.2 Configuration and functions of system

The configuration of the system is shown in Fig. 7. Several
techniques were considered at the system design phase. Among
them were:

¢ Operations research (OR) technique

¢ Physical model (material flow simulation)

® Expert system

The OR technique was excluded because of computational
complexity. The physical model suited the purpose because it
allowed a clear material flow pattern to emerge, but its complex-
ity and made it extremely difficult for the operator to represent
the knowledge peculiar to his or her expert domain.

The expert system is the best method for extracting such
domain knowledge, but cannot clarify the material flow pattern
involved. The system was built as a hybrid configuration utilizing
the merits of both the physical model and expert system methods.
The following ideas were devised to make up for the shortcom-
ings of the two methods:

(1) A rough model replicating the basic physical behavior of
the production line is used to observe the material flow
pattern.

(2) Knowledge not embedded in the model is represented in
the expert system.

(3) The prediction interval of the model is shortened so that
the expert system can modify the model before an error
compounds.

The system consists of two main modules: the material flow
model and the modification module. The material flow model
simulates material flow according to the given operation status
and equipment operation plan. Its output is integrated with the
evaluation of other elements (overall line conditions) and shown
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Fig. 7 Configuration of PFCSS
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on the CRT. The operator decides the validity of the solution. If
the obtained solution is not satisfactory, the modification module
selects another operation strategy and material flow is simulated
again by the material flow model.

The modification module adjusts the parameters of the
material flow model and changes the operation strategy. When
the initial and line conditions are given, the material flow model
calculates the production line conditions every 2 seconds. After 5
reiterations or 10 seconds of the model time, the results are
transferred to the modification model, which in turn determines
the production line conditions based on the output of the material
flow model.

To obtain one scheduling candidate, this cycle is iterated for
10 minutes of the model time (about 10 seconds of real time).
The user can make as many attempts as he or she wishes to
search for a better candidate. Fig. 8 shows the relationship
between the material flow model and the modification module in
detail. The interface between the operator and the material flow
control system is a graphical user interface (GUI).

The material flow model is implemented in C++ because of
the advantage in modeling ability of object-oriented languages. In
contrast, the modification module is implemented as an expert
system in K1 because it must decide on an appropriate operation
strategy by utilizing symbol-based knowledge that allows it to
evaluate the output of the material flow model. The modification
module makes use of expert knowledge supplied by skilled
workers and represents this expert knowledge by many rules. The
rules are grouped by the grouping function of K1.

The present knowledge base consists of 41 working memory
element classes, 887 rules, 51 rule groups, and 26 contexts.

The system was developed on a UNIX workstation. The
material flow model and modification module exchange messages
through interprocess communication. Openwindows is used for
the GUL

4. Evaluation

The benefits of the PFCSS and the effectiveness of K1 in the
development process were evaluated.
4.1 Benefits of systemalization

The PFCSS was tested on a yard balance optimization
problem using actual data from several typical situations. The test
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Fig. 8 Relations between material flow model and modification module
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addressed the problem of controlling the flow of plates among
three tables: E, H, and K (conveyors). The purpose of yard
balance optimization is to distribute plates to the tables and to
balance the piling of plates at the yard tables

The flow of plates to each table is shown in Fig. 9. Clearly,
the number of plates piled at each table is properly controlled by
the modification module incorporating the expert system. The K1
expert system obtained solutions that agreed with 80% of the
judgments made by a skilled operator throughout the test. The
20% miss rate was due to unexpected events, but the system is
designed to be manually overridden by the operator when such
unexpected events occur.

The results of inference speed evaluation are shown in Table
1. As a comparison, the inference speed of a system implemented
in a rule-based descriptive language using the RETE algorithm is
shown. The inference speed of K1 is about seven times higher
than that of the RETE algorithm.

The developed system is positioned as a prototype, but can
compute scheduling in the plate finishing process at an adequate
inference speed and can accommodate the future addition of rules.
The authors firmly believe that if its accuracy is improved, the
system will be commercially viable and able to reduce the number
of workers required to finish plates and cut plate finishing costs.
4.2 Effectiveness of K1
4.2.1 Characteristics of object-oriented methodology

The system references and eventually stores as working
memory elements an enormous volume of external data. That
success demonstrated the effectiveness of initially designing work-
ing element classes according to an object-oriented methodology.
The design phase clarified numerous items of data processing in
the working memory elements and showed this data processing as
a method of naturally representing data-dependent processing.

Some matching conditions were too complicated to be described
by the grammar of K1. In such cases, the user can define a
matching condition by a method and can represent a rule by
referring to a method in the condition section. The material flow
control system has a data base to store the results of reasoning.
To avoid contradiction between the external data and working
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Table 1 Comparison of inference speed

RETE K1

Time/Rule(s) 0.0085 0.00125

memory elements, a method-like daemon starts when a working
memory element changes.

Let us assume that a daemon is described by the user for an
attribute, for example. When the attribute value changes, the
daemon is called, automatically updates the external data
associated with the attribute value, and ensures consistency with
the working memory element. Inheritance, too, is often utilized.
Structured knowledge can be naturally represented, the descrip-
tiveness of the knowledge base can be improved, and the main-
tainability of the knowledge base can be enhanced. If knowledge
is defined by inheritance, the change made in a parent is auto-
matically reflected in all of its offspring.

Inheritance appears to detract from the modularity of knowl-
edge, which modularity is an advantage of production rule rep-
resentation. Experience convinces the authors that the advantages
of inheritance outweigh its disadvantages.

4.2.2 Integration with other systems

Two aspects of K1’s system integration capability were
evaluated. One aspect was direct coding in C++. An important
merit of direct coding is the elimination of redundant rules.

For example, similar but different actions are sometimes
taken according to the calculated results of action section of
production rules. In such cases, direct coding in the C++ switch-
case statements can sharply reduce production rule description,
clarify the procedural nature of processing, and improve the
readability of production rules. If direct coding in C++ is not
used, all actions must be programed with rules.

In addition, reducing in the number of rules decreases the
number of pattern-matching operations and increases the
execution speed of the system. The C++ class import function is
also convenient. In the analytical phase of the system, the
material flow model’s data structure was determined first. The
data structure is reflected in the knowledge base of the system by
using the import function of the C++ language classes. Practically
no special programing was required to reflect in the expert system
the results of evaluation by the material flow model.

The other aspect is integration with external modules in
library format. Many subroutines (run in C language) developed
in past projects were re-utilized in the development phase of the
present system.

As described in the preceding section, these libraries can be
easily linked by specifying a few directives in the knowledge
base. This is a simple function that can be used along with direct
coding in C++. Integrating the modules of K1 itself is as effective
as integrating the PFCSS with external systems. Since K1 also
supports the division of the knowledge base, the knowledge base
of the material flow control system was divided into multiple
modules, which were developed in parallel by many engineers.

For example, one engineer implemented a knowledge base
belonging to one rule group, while another implemented a
knowledge base belonging to a different rule group. Before they
were integrated the knowledge bases were independently tested to
check their operation. Separation of the knowledge bases in
different contexts allows knowledge changes to be made without
hindering smooth knowledge base development.

5. Conclusions

The planning expert system building tool K1 and the devel-
opment of the PFCSS (Plate Finishing Control Suport System)
using K1 are described. The object-oriented tool K1 improves the
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descriptiveness of the knowledge base and uses the development
methodology for rule-based programing. K1 is designed for
application in the development of large-scale systems that specif-
ically handle synthetic problems like planning and scheduling
problems. The validity of the inference algorithm of K1 was
verified through several tests. All K1 software is prepared in
C++ for faster execution speed and portability.
An editor and a browser are provided as the development
environment. The editor and browser should help engineers not
familiar with rule-based descriptive languages to develop, build,
and maintain effective knowledge bases more quickly. The
effectiveness of K1 was verified based on its application to the
development of the PFCSS. The PFCSS is now being prepared
for practical application. The development of the PFCSS
demonstrated the effectiveness of the K1 object-oriented expert
system building tool and convinced the authors that K1 is a
powerful tool for integrating an expert system with an existing
system.
In the next phase, the PFCSS will be improved with the
addition of new knowledge, and the results obtained in the
development of the PFCSS will be fed back to the next version of
K1.
® Diag-Solver is the registered trademark of Nippon Steel
Corporation.

e UNIX is the registered trademark licensed by X/Open
Company Limited in the United States and other countries.

» Openwindows is the registered trademark of Nihon Sun
Microsystems K.K.

* X-Window is the registered trademark of Massachusetts
Institute of Technology (MIT).

¢ The names of hardware and software described here are the

tradenames or trademarks of their manufacturers.
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