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The software FLEDY, which uses the finite element method (FEM) for the three-

dimensional analysis of electromagnetic fields, has been applied to the design and

development of electromagnetic energy utilizing equipment in ironmaking and

steelmaking processes. The basic equations of the electromagnetic field analysis

software FLEDY, its functions, and its fast computing methods are described. The

application of FLEDY to assist in the control of molten steel flow within a con-

tinuous caster mold is discussed as an example of its usage in the steel indus-

try.

1. Introduction

Two of the authors already explained the three-dimensional,
general-purpose, FEM electromagnetic field analytical software
FLEDY in a previous issue of the Nippon Steel Technical Report
(NSTR)". Originally developed as an aid to develop electromag-
netic energy utilizing equipment in ironmaking and steelmaking,
FLEDY has been used in the design and development of equip-
ment, and has been functionally improved for that purpose.
Nippon Steel’s Electronics & Information Systems Division start-
ed marketing it in 1989, and has since supplied it to many users
in and outside the Company.

This paper touches on the basic equations for analyzing elec-
tromagnetic fields, the functions of FLEDY, and the techniques
employed to increase the speed of computation. The improve-
ment of FLEDY’s computing speed has been particularly strik-
ing. New techniques such as the ICCG (incomplete Cholesky
conjugate gradient) method and the edge element method are dis-
cussed in detail. The increased speed of solving simultaneous lin-
ear equations by parallel processing is described in depth as well.

*1 Technical Development Bureau
*2 Electronics & Information Systems Division

The use of FLEDY in controlling the flow of molten steel in a
continuous caster mold is introduced as an example of a steel-
making application. A practical technique for electromagnetic
field analysis is used in this example.

2. Basic Equations for Electromagnetic Field

Analysis'?

FLEDY consists of two programs: one program for solving
magnetostatic field and eddy current field problems and another
for addressing electrostatic and temperature fields. The basic
parts of the two programs are described here.

2.1 Basic equations for eddy current field

The basic equations for an electromagnetic field are the fol-

lowing four Maxwell’s equations:

VXH=J+Z_:) ...... ¢
B )
VXE= at )
v-B=0 3)
v-D=p e )
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where E is electric field intensity; B is magnetic flux density; D
is electric flux density; H is magnetic field intensity; o is electric
charge density; and J is electric current density. The following
relations, called constitutive equations, exist between the vectors
in the above equations:

B=¢H, D=<E e (5)

where 1 and ¢ refer to permeability and permittivity, respective-
ly, and are generally tensor quantities. Usually in these equations,
the vectors are replaced by quantities called the vector potential
A and scalar potential ¢ , respectively.

B=VXA, E——S—?—Vyﬂ ------ 6)

This is the most standard transformation method capable of
deriving physical quantities about a given electromagnetic field.It
is highly versatile, and is called the A- ¢ method. Since the pres-
ence of the vector potential A is already confirmed®, the A-¢
method is adopted in most of today’s electromagnetic field analyt-
ical programs.

The following equations obtained by ignoring the right-hand-
side second term or displacement current term of Eq. (1) and
using Egs. (5) and (6) as well as the Joule’s law are used as the
basic equations for the eddy current field:

VX(IU Y] ><A)=J°-l--Jc ...... (7)
V-@+Iy=0 @)
JC=J'E=—J'(%+V¢) ...... )

where J, is exciting current density and J. is eddy current density.
An electrostatic field problem can be solved by using Eq. (7)
alone and putting J, at 0. Eq. (9) contains a time differential term
and must be discretized with respect to time as well. An eddy
current field is quasi-stationary. That is, a sinusoidal AC problem
can be solved by the j w method whereby the differential operator
is replaced by the complex number jw, where j is the imaginary
unit and w is angular frequency (the time variation corresponds
to the phase variation). For a transient problem, Eq. (9) is dis-
cretized by the backward finite difference method formulated as
follows:

Ai Ai+1—Ai .
9 3 tH = Xt (where At is time increment)

The Galerkin method is applied to the basic equations thus
obtained, and the basic equations are then discretized by the finite
element method. The developed simultaneous linear equations are
summarized into the following equations, where the square brack-
ets [ ] and the braces { } denote a matrix and a vector, respec-
tively:

[K (4, 0,0)] {A} = {FJ.)} (Quasi-stationary)
[K (2, )] {Ans) =[M (AL, )] {A} + {Fuy (00}
(Transient)

The discretization procedure and equations are described in
detail in Reference2). The same discretization procedure also
applies to the next electric field analysis, except for the basic

equation.
2.2 Basic equation for electric field

Poisson’s or Laplace’s differential equation is a basic equation
for understanding electrostatic fields and steady-state electric cur-
rent fields. The FLEDY program uses the following diffusion
equation as the basic equation and can calculate the temperature
field as well as the electrostatic field and the steady-state electric
current field.

V'(%'V¢)+Q=c%?— ...... (10)

where ¢ is potential or temperature; « is permittivity, electric
conductivity or thermal conductivity; C is electrostatic capacity or
heat capacity; and Q is electric charge density, current source
density or heat source density. The Crank-Nicolson method is
adopted for the development of the time derivative®. The
Galerkin method is applied to Eq. (10), and the simultaneous lin-
ear equations developed by the finite element method are repre-
sented by the following equation:

[KGO] {4} +[C12-{g} = {Q}
then, the Crank-Nicolson expansion becomes:
[C] + —1— [K]){(]S} 4,

- Et] A8 1w g

—7{(1+ B){Q}rat (1= £){Q}}

where (3 is a parameter that assumes the value of —1< 3 <1.

3. Analytical Functions of FLEDY

The above-mentioned basic equations can be used to analyze
various electromagnetic fields. There are several functions that
are necessary or effective for solving concrete problems. Such
analytical functions of FLEDY are described below. Besides
those described here, there are many additional analytical func-
tions such as for computing the Maxwell stress, velocity term,
permanent magnet, material anisotropy, and magnetic energy.
3.1 Nonlinear analytical functions

As the magnetic field intensity increases, actual magnetic
materials generally decline in magnetic permeability or undergo
what is called magnetic saturation. Solutions cannot be obtained
without using nonlinear analysis. Although there are several non-
linear analytical techniques, FLEDY has the simple iterative
method of iteratively correcting the permeability u in Eq. (7) and
the Newton-Raphson method® estimates the amount by which the
potential is to be corrected on the basis of the Maxwell equations.
The two methods can make the necessary corrections by referring
to magnetization characteristic curves and can also refer to either
the magnetic permeability, magnetic flux density or vector poten-
tial when judging convergence. The Newton-Raphson method
tracks down the magnetic flux density by utilizing the tangent to
the magnetization curve and is widely used in structural analysis,
for example. Since its convergence is not high in electromagnetic
field analysis, the relaxation coefficient was introduced on a trial
basis®, but not much improvement was obtained”.

The previous report” touched on a new quasi-stationary non-
linear analytical technique termed the equivalent sinusoid method.
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The equivalent sinusoid method later proved insufficient for prob-
lems containing the revolving of the magnetic field intensity H
and the magnetic flux density B, so it was expanded to embrace
revolving magnetic fields as well®. The expanded version also
assumes the directional coincidence and anisotropy of H and B.
The expansion causes little or no increase in computing time and
provides approximately 20 times higher computing speed.

3.2 Voltage source analytical functions (circuit equations)”

Basic equations (7) and (8) assume that the exciting current
density J, is known. The voltage value of actual electric equip-
ment is mostly referred to when operating or inspecting it, how-
ever. It is necessary to constitute basic equations that use the volt-
age value in place of the current value.

It is assumed that single-phase alternating current flows in the
series circuit shown in Fig. 1. The circuit line current is put at L,
by ignoring the skin effect of the conductor. Assuming that the
line current I, flows in a coil with the cross-sectional area S. and
number of turns n., the following equation can be formed:

nl,=S %l (11)
The series circuit is expressed by
(Z.+ BRI, +jowy =V, e (12)

where ¢ is the magnetic flux that interlinks with the coil and is
expressed by the following equation with the use of the vector
potential:

¢,=I§: ff(fA‘dI)dS ...... (13)

Surface integration is performed with respect to the cross-sectional
area of the coil, and line integration is performed along the length
of the coil. The finite element region and circuit can be handled
as a combined system by transforming Eqs. (7) and (12) with
Egs. (11) and (13) and solving them simultaneously with Eq. (8).
3.3 Leaf elements™

If a problem involves an extremely thin material with respect
to its dimensions in the analytical domain, as is the case with
magnetic head gaps or thin magnetic shields for MRI (magnetic
resonance imaging), the scale difference adds a degree of numeri-
cal singularity into the simultaneous linear equations, producing a
nonphysical solution. Enormous computing time will be required
if the analytical domain is divided into a finer mesh to obtain the
correct solution.

The leaf element method constitutes simultaneous equations
by not making variables on adjacent nodes as the unknown vari-
ables but by making the difference between the variables as the
unknown variable (called the relative potential). This achieved the
desired accuracy and shortened computing time.

When the nodes i+1 and i are close to each other, the elec-
tromagnetic quantity A is transformed as follows:

Z,

Finite element region
Vo

Pig. 1 Series circuit connected to voltage source

Ai+l = A+ Ai
where A is the relative potential. The numerical singularity noted
above can be completely eliminated by using A as the unknown
variable in place of A;,, and reconstituting the simultaneous equa-
tions.

An application example of the leaf element method is given
here. A 1/8-scale model of a simple magnetic shield is illustrated
in Fig. 2. The experiment was conducted to verify the validity of
the leaf element method. Contour maps of the x-direction compo-
nent of the magnetic flux density are prepared from the analytical
and experimental results and are given in Fig. 3. Of the six con-
tour maps, the three on the left side present the experimental
results, and the three on the right side present the analytical
results. Fig. 3(a) shows the contour maps without the magnetic

Magnetic shield (27 pm thick)

Coil (3 A, 226 turns)

Pig. 2 1/8-scale model of magnetic shield (magnetostatic field)

Bx— (Unit: Gauss)
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(c) With magnetic shield (amorphous)
Analysis results

Experimental results

Fig. 3 Comparison of experimental and analysis results
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shield. From the two contour maps, it is evident that the volume
ratio produces no effect in the leaf element method. From the
contour maps of Figs. 3(b) and 3(c), it is evident that a valid
solution is obtained in the presence of the magnetic shield. The
accuracy of the solution is especially high with an amorphous
shield of high permeability. When the magnetic shield was elec-
trical steel H12 and the contour maps were computed by the con-
ventional finite element method, the maximum magnetic flux
expanded four times or more, and abnormally large vectors
appeared in the air.

3.4 Floating node method'

The floating node is a constitutive node of a finite element
that does not overlap with any other node except at the outermost
boundary. Consider two nodes i and j, and assume another node
p on the straight line connecting the nodes i and j. The node p is
defined as a floating node. The physical quantity A, at the node p
is approximated by the following liner interpolation equation:

A, = aAi+(1-a)A;
where « and 1-a are the distance ratios of the node p with
respect to the nodes i and j, respectively. The floating node is rel-
ative. The nodes i and j can be conversely interpolated from the
node p and another node.

The floating node method has the following two advantages:

(1) Since the analytical domain can be divided finely in some

portions and coarsely in other portions, the number of
elements is reduced(Fig. 4').

(2) Since inconsistent elements can be joined, mesh prepara-

tion and relative object movement can be easily handled.

An example of analysis made by using the advantage (2) is
shown in Figs. 5 and 6. A model of a rotor with a periodic
arrangement of electric current is shown in Fig. 5. The analytical

General view

Enlarged view

Fig. 4 Mesh plot containing floating nodes
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Fig. 5 Schematic of 1/4 model of rotor ~ Fig. 6 Potential contour map

result of the model by the floating node method is given in Fig. 6
with vector potential contour lines. Despite the presence of many
inconsistent nodes where the two regions meet, the contour lines
are smoothly connected.

3.5 Coupled analytical functions"

Actual electromagnetic equipment involves not only electro-
magnetic phenomena, but also thermal phenomena and dynamic
motions. When analysis with a high degree of reality is required
or when the final quantity desired is not an electromagnetic one,
it is necessary to analyze electromagnetic phenomena coupled
with other phenomena. FLEDY can handle problems where elec-
tromagnetic phenomena are coupled with thermal and fluid flow
phenomena. This capability is one of its main features.

3.5.1 Coupled analysis with temperature field

The problems of conductive heating and inductive heating
must be solved as coupled with temperature fields. FLEDY
allows such problems to be analyzed with a high degree of reality
through data exchange. The following procedure is employed:

(1) With the jw method, obtain the amount of heat generated

by induced current.

(2) Compute the temperature over some time steps from the
amount of heat generation.

(3) Update the physical quantity (magnetic permeability or
electric conductivity) from the temperature.

These three steps are repeated until the end of the analysis.

For DC conductive heating, obtaining the amount of heat
generated in step(1) by the electric field analytical program is suf-
ficient. Since the change with time in the electromagnetic field is
usually greater than that with temperature, electromagnetic field
analysis is sufficiently in the quasi-stationary state and is per-
formed with a shorter computing time. Since the variations in the
electromagnetic properties of the material can be considered with
the temperature change, the phenomena involved can be accurate-
ly reproduced. Both programs can use the same mesh.

3.5.2 Coupled analysis with fluid flow field

Electromagnetic fluid problems such as those involved with
electromagnetic stirring must be coupled with fluid flow. FLEDY
can compute the Lorentz forces acting on conductors. The behav-
ior of fluids under electromagnetic forces can be thus reproduced
to some degree by the following procedure:

(1) The Lorentz force is time averaged by the jw method in

FLEDY.

(2) The time-averaged Lorentz force is transferred to another
fluid analysis program and substituted into the volume
force term of the Navier-Stokes equation to compute the
fluid velocity.

Mutual computation is not performed as done for the analysis
of the electromagnetic field coupled with the fluid field. This
method produces a satisfactory solution when the time scale of
the fluid field is far greater than that of the electromagnetic field.
Since the electromagnetic force and the fluid velocity do not gen-
erally agree in the distribution region, however, the mesh must
be prepared by paying attention to this difference. An actual
example of analysis performed by this method is described in
detail in chapter 5.

4. High-Speed Computing Techniques

Computing capability depends on computer capacity and
speed. It is desirable that a solution be obtained with a small
computing capacity and a short computing procedure. This objec-
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tive may be accomplished by increasing the speed of either the
algorithm or computer. The iterative solution method is typical of
the former method, and parallel processing is representative of
the latter. The two methods are discussed in detail here.

4.1 ICCG method™?

Simultaneous linear equations may be solved by direct or iter-
ative methods. FLEDY has both methods. The diréct method is
the modified Cholesky method, and the iterative method is the
incomplete Cholesky conjugate gradient (ICCG) method.
Problems composed of large simultaneous linear equations and
high in convergence can be solved by the ICCG method in a far
shorter computing time than possible with the modified Cholesky
method. Computational examples are given in Table 1. The
ICCG method increases the computing speed by seven times.
Refer to section 4.3 for the algorithm for the ICCG method.

The ICCG method is superior in not only speed but also con-
vergence. If the problem does not converge after many iterations
by the ICCG method, it is often ill-natured or ill-conditioned. In
other words, whether or not specific problems are ill-conditioned
can be known to some degree from the level of convergence
obtained by the ICCG method.

4.2 Edge element method™

Since electromagnetic field analysis techniques have advanced
on the basis of structure analysis techniques, they are fundamen-
tally the same as structure analysis techniques. A new element
method, suited for handling electromagnetic fields, which is basi-
cally composed of vector quantities and called the edge element
method, was developed in the late 1980s and has been studied by
many researchers since.

The edge element method is characterized by the assignment
of variables. The nodal element method assigns all necessary
physical quantities to each node and constitutes a vector quantity
from three variables at each node. On the other hand, the vector
quantity is represented by the vector composition of edge ele-
ments. A variable is assigned to each edge, and the direction of
the vector is expressed by the direction of the edge (see Fig. 7).
There are three reasons why the edge element method is spot-
lighted. Unlike the conventional element methods, the edge ele-
ment method can directly represent vector quantities by vector
interpolation functions. Accuracy is very high for electromagnetic
wave problems, as compared with the nodal element method, and
higher computing speed can be achieved. With the edge element
method alone, however, increased computing speed cannot be
always accomplished.

As far as the computing speed increase is concerned, the edge
element method and the nodal element method, both being direct
methods, are approximately the same in the spread of the matrix
band width and have no factors conductive to higher speed.
When an iterative method such as the ICCG method is used,
nonzero components in the matrix suffice, and their number is

Table 1 Effects of ICCG method and edge element method on computing

time
Node element method Node element method Edge element method
+ modified Cholesky method|  + ICCG method + ICCG method
Number of - 438 220
iterations
Computing time 859 min 123 min 40 min

The holed model! of the Institute of Electrical Engineers of Japan (number of
elements:5,445; total number of nodes: 6,368)

ICCG convergence criterion: 5.0X 10°;computer: Sun Microsystems SPARC
Station 2

A L— L »

gy - >

Ay

Nodal element Edge element

Fig. 7 Nodal element and edge element

usually about a half to one-third of that of nodal elements. In
addition, the required number of iterations is a few times smaller
than for the nodal element method, resulting in higher speed. An
example of the edge element method used as incorporated into
FLEDY to achieve higher speed is given in Table 1. The combi-
nation of the edge element method with the ICCG method is at
least three times faster than the combination of the nodal element
method with the ICCG method and is more than 21 times faster
than the standard combination of the nodal element method and
the modified Cholesky method.

4.3 Speed increase by parallel processing'”

The FLEDY parallel processing technique solves simultane-
ous linear equations by assigning them to multiple processors.
The hardware is composed of Transputers or Inmos-developed
processors with local memories, and a distributed-memory
MIMD (multiple-instruction multiple-data) architecture. The
MIMD architecture has no limitations on the number of proces-
sors to be used and is expected to become a mainstream parallel
processing architecture in the future.

Parallelization was implemented for both the modified
Cholesky method and the ICCG method. Parallelzation for the
ICCG method, which is increasing in usage is described here.
The algorithm of the ICCG method for the simultaneous linear
equations Ax = b is as given below.

(Incomplete Cholesky decomposition and initial value setup)
K= (UDU)", x,=Kb, r,=b-Ax, po=Kr,

(Iterative computation: kth iteration)
While ir [ >elibl
ay (1, K1)/ (P Api)
Xier = X+ @y Py
Lo = Iy — @ ADy
B (e, Krpo) /(1 , K1)
Prar = Kria + /9k Px
k=k+1

1l

where U™, D, and U are the lower triangular, diagonal, and upper
triangular matrixes obtained when the overall coefficient matrix A
is subjected to the incomplete Cholesky decomposition, respec-
tively, and ¢ is the convergence criterion.

Parallelization is difficult to perform with the incomplete
Cholesky decomposition and with the backward substitution after
each iteration. The degree of parallelization for these operations
governs the computing speed. To facilitate this parallelization,
incomplete Cholesky decomposition is performed only on the
nonzero components in each block in the band matrix shown in
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Band width

Range of incomplete Cholesky
decomposition performed
by one processor

Fig. 8 Parallelization of incomplete Cholesky decomposition

Table 2 Computing time(ICCG method, diagonal terms multiplied by

1.2, unit: s)
g%’ggigfsf Processing time| Data transfer | Preprocessing {;g_g‘t?g;s(’f
1 1858 21 134 92
2 1291 22 54 146
4 805 22 20 202
8 481 22 8 247
16 284 26 3 265

Number of matrix dimensions: 2,224, band width: 392, number of nonzero
components: 78,528, CPU: Transputers (Inmos)

Fig. 8. The size of one side of the block is equal to the number
of rows covered by one processor. Data communication between
the blocks is eliminated in the incomplete Cholesky decomposi-
tion and is reduced in the backward substitution after each itera-
tion. Increasing the number of processors decreases the range of
incomplete Cholesky decomposition and increases the number of
iterations. At present, there are no iterative methods that can
achieve high parallelization and high convergence at the same
time. Table 2 shows the computing time by the parallel process-
ing technique. The reduction in total computing time is prevented
by the increase in the number of iterations. The modified
Cholesky method is highly effective as far as paralle] processing
is concerned. When selecting a solution method it is necessary to
consider such factors as model size, computer capacity, and total
computing time.

5. Application to Fluid Flow Control in Mold'*'®
5.1 In-mold fluid flow control and electromagnetic stirrer
The ability to control the quality of steel in a steelmaking
process is decisively important from a production point of view.
Continuous casting is a principal determinant of steel quality.
Once the molten steel that has been refined in the basic oxygen
furnace (BOF) is solidified on the continuous caster, the surface
properties of the cast steel cannot be greatly changed, neither can
nonmetallic inclusions be removed from the cast steel in subse-
quent steps. To improve the surface quality of steel and remove
nonmetallic inclusions, the molten steel in the solidification
region is induced to move by an in-mold electromagnetic stirrer.
The electromagnetic stirrer causes the molten steel to flow as
a result of the electromagnetic force produced by an electromag-
netic coil. It is necessary to first grasp the electromagnetic phe-
nomena at work by electromagnetic field analysis and then clarify
the flow characteristics of the molten steel by fluid flow analysis.

Since the object to be stirred is a fluid, the magnitude of the elec-
tromagnetic force is as important as its distribution. Usually, the
electromagnetic stirrer is equivalent to the primary coil of a linear
induction motor, and the molten steel is equivalent to the sec-
ondary side of the linear induction motor.. The moving magnetic
field produced by the coil interlinks with the molten steel and
induces an electric current in the molten steel. The moving mag-
netic field and the induced current produce the Lorentz force,
which in turn stirs the molten steel.

An example of an in-mold electromagnetic stirrer is illustrat-
ed in Fig. 9. The mold is made of copper plates of high enough
thermal conductivity for efficient heat extraction and fast solidifi-
cation of the molten steel. Each copper plate is reinforced with an
outer stainless steel plate. The coil is installed outside of the cop-
per and stainless steel plates. Since the distance between the coil
and molten steel is large, the pole pitch must be also large. When
the pole pitch is large, magnetic field leakage increases. To sup-
press magnetic field leakage and accomplish space savings around
the mold, the coils is tightly wound around the core. The coils
are installed parallel in the broad sides of the mold.

5.2 Magneto-fluid analysis technique

The values for Lorentz force obtained by FLEDY were trans-
ferred as external force values to the fluid flow analysis software
developed at Nippon Steel and were used as data for computing
the molten steel velocity. Here, it was assumed that the synchro-
nous velocity of the magnetic field produced by the linear motor
was much higher than the flow velocity of the molten steel and
that the fluid field had no effect on the electromagnetic field.

The electromagnetic field analysis modeled the meniscus area
where the electromagnetic field is concentrated, and the fluid
field analysis modeled the long mold filled with the molten steel.
Spatially, a three-phase alternating current is periodically applied
to the coils to form the moving magnetic field (the moving direc-
tion is counterclockwise when seen from above).

The' linear structure of the coils can produce unbalanced
three-phase components in the electric current. Since the operat-
ing frequency is a few hertz at most, however, the primary DC
resistance components predominate over the inductance compo-
nents on which the unbalance exerts an effect. A source of cur-
rent balanced in the three phases was used for the analysis. The
cores were free from magnetic saturation and constant in relative
permeability.

The Lorentz force distribution near the meniscus as obtained
by the electromagnetic field analysis and seen from above is

/. Linear motor

{ Core
y——/ /

Linear motor
e el - Core
-~ Molten steel

Powder

Fig. 9 Schematic illustration of in-mold electromagnetic stirrer
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Fig. 10 Top view of Lorentz force distribution near meniscus
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Fig. 11 Top view of velocity distribution near meniscus

shown in Fig. 10. The velocity distribution derived from the
Lorentz force distribution is shown in Fig. 11. Rotary stirring
always produces nodes in the Lorentz force distribution. The
effect of the nodes on the velocity distribution was found to be
small.

6. Conclusions

The present analytical functions and application examples of
the three-dimensional general-purpose electromagnetic field
analysis software FLEDY have been described. The functions
have been added through the use of FLEDY as an aid in the
development of specific electrical equipment and electromagnetic
energy utilizing equipment used in ironmaking and steelmaking
processes. The usefulness of FLEDY has been indicated through
its application to the electromagnetic stirring of molten steel in
the mold of a continuous caster. As can be seen from this exam-
ple, the synergistic effect of computer environment advancement
and algorithm improvement has increased the reality of numeric
approaches to actual problems. Under these circumstances,
numeric analysis techniques are expected to find increasing use in
applications to actual processes.
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