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Utilization of Advanced Scientific Computation in
Developing Materials and Processes

Abstract:

Tooru Matsumiya*!

Increasing speed, capacity, and cost performance of computers are encouraging the

analysis and control of material manufacturing processes by scientific computation. The

use of simulation is also expanding as a means for predicting the functions of not only

conventional pure materials but also of more complex, applied materials. It is hoped

that the development of computational infrastructure such as numerical computation

techniques and parallel computing languages will allow utilization of advanced scientific

computation to facilitate the systematic and effective use of empirical findings, enable

virtual experimentation to replace actual experimentation, and to explain and predict

phenomena concerned with material and process design.

1. Introduction

When the yearly performance improvement of computers is
examined, it is clear that minicomputers, mainframe computers,
and supercomputers have all improved in performance by one
hundred fold between 1970 and the early 1990s". The improve-
ment of microprocessors since 1985 has been exceptional, with
their performance increasing ten times every four years”. In
recent years, the performance of supercomputers has improved at
nearly the same rate owing to the use of multiple processors.
Supercomputers operating at a few hundred MFLOPS cost sever-
al ¥ billion in 1985, whereas engineering workstations (EWS 's)
running at two GFLOPS cost less than ¥ 100 million in 1995.
These figures indicate that the cost performance of computers
improves tenfold every five years.

Against the background of increasing speed, capacity, and
cost performance of computers as noted above, computer lan-
guages, computational techniques, and other software areas have
been developed to fully use available computer capacities, and
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have achieved many advances. Of particular note is the fact that
the ending of the Cold War has released military software for
civilian use and diverted the efforts of many of the software
developers engaged in military computation into general scientif-
ic computation. Table 1 shows noteworthy topics discussed at
the tutorial seminars of the 1993 Physics Computing Conference
organized by the American Institute of Physics in May 1993.
Many of the tutorial seminars were presented by U.S. national
research laboratories that are conducting innovative numerical
computation and parallel computation techniques.

Among the wide-ranging advances accomplished to date
are strength design of structures and numeical wind tunnel] experi-
mentation based on continuum mechanics; macroscopic analysis
of material manufacturing process behavior by the combination of
continuum mechanics models with phenomenological models;
microscopic analyses of mechanisms and properties where simu-
lated are phenomena, processes and materials on the levels of
atomic movement and arrangement ; and prediction of magnetic,
electrical and optical properties — or, reactivity and interatomic
bond strength — based on the spatial distribution and energy
structure of electrons and spins. With these achievements, com-
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putation is now highlighted as the third scientific approach after
theory and experimentation. This paper considers the signifi-
cance, present state, and future outlook of the utilization of ad-
vanced scientific computation.

2. Significance of Scientific Computation

The significance of scientific computation in developing
materials, processes, and equipment is summarized in Fig. 1.
Firstly, in substituting for experimentation and prototype testing,
computation can reduce the number of test conditions required,
thereby shortening the development lead time and reducing the
development cost. Next, computation can be performed under
extreme environmental conditions or conditions difficult to simu-
late by experimentation, such as ultrahigh temperature, ultrahigh
pressure, ultrastrong magnetic fields, and exposure to nuclear
radiation. Computation can also be used to extensively investigate
the behavior of processes, materials, and equipment under such
extreme conditions, and to find optimum solutions outside the
realm of conventional thinking. Furthermore, phenomena, as well
as material and process behaviors and states that cannot be exper-
imentally observed can be simulated by computation to clarify the
mechanisms at work to accomplish control or optimization based
on such mechanisms, and eventually to discover the seeds for
developing innovative technology. For example, the spatial dis-
tribution and energy structure of electrons and their change with
time, and atomic structures and their changes cannot be experi-
mentally observed except in extremely limited portions. These
phenomena, however, can be observed in detail by energy band
computation according to the first-principle method, by molecular
orbital computation, and by simulation with molecular dynamics
and the Monte Carlo method. These computational techniques
have proved effective in predicting the physical properties of
materials and understanding the essence of phenomena as already
described. Lastly, the computer’s power is used to combine and
run models for overall simulation to their end. The results of
computer simulation are compared with the results of experimen-
tation under various conditions. The models are improved until
there remains no contradiction between the simulation results
and the experimental results. In this way, universal models can

be built and validated, and empirical findings can be utilized as
technical data with high transferability, and accumulated for
future use.

To put it another way, scientific computation either must
allow the properties of materials and the behaviors of processes
to be predicted without any empirical findings or it must provide
rational methods for predicting the properties of materials and the
behaviors of processes in hitherto unexperienced areas by interpo-
lating and extrapolating empirical findings.

3.Present Utilization of Scientific Computation
Application examples of scientific computation at Nippon
Steel are shown in Fig. 2. Continuous casting, plastic working,
and plastic forming processes are the main subjects to which sci-
entific computation is applied. Fluid dynamic analysis based on
continuum mechanics and structural mechanic analysis is the
predominant application technique, followed by electromagnetic
field analysis, heat transfer and diffusion analysis, and thermody-
namic analysis using thermodynamic models. These subjects are
treated in this paper. In the materials area, attempts are being
made to simulate phase diagrams, to simulate phase transformation
in combination with transport phenomena, to simulate the trans-
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Fig. 1 Aims of scientific computation

Table 1 Tutorial seminars at 1993 Physics Computing Conference

1. Numerical computation technique

Organized by

1) Numerical fluid dynamic technique
“Moving Finite Elements”

2) Numerical fluid dynamic technique
“Flux-Corrected Transport Algorithm”

Adaptive remeshment to meet

specific computational purpose.

Suited for parallel computation of compressible
fluids, reactive fluids, multi-phase flow, turbulent-

Los Alamos Laboratory

Naval Research Laboratory

laminar flow transition, and complex-shaped flow

3) Particle system simulation method

4y Application of finite element method
to quantum mechanics

5) Conjugate gradient method

Molecular dynamic method
Solution of wave equation by FEM

Solution of optimization and

AEA of United Kingdom
Worcester Polytechnic Institute

Lawrence Livermore Laboratory

minimum/maximum value problems

2. Parallel computation

Organized by

1) Parallel computer FORTRAN
“High Performance FORTRAN”

2) Massively parallel computing method
“Massive Parallel”

3) Parallel computer FORTRAN
“Modular FORTRAN™

Provided with functions similar to
those of C language and usable for data bases

Rice University
Lawrence Livermore Laboratory

Argonne National Laboratory

3. Others

Organized by

1) Distributed scientific computation with
different makes of computers
2) Programs available for use in such areas
as physics, science, engineering, and mathematics

Lawrence Livermore Laboratory

Lawrence Livermore Laboratory
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Fig. 2 Map of application examples of scientific computation
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formation and recrystallization structure evolution processes by
the Monte Carlo method, and to predict phase stability, grain
boundaries, defects, magnetic properties, and mechanical proper-
ties in atomic and electron level analysis. These applications are
still limited and are not treated here.

Problems associated with the continuous casting process
include the control of nonmetallic inclusions, prevention of cracks,
and suppression of center line segregation. For example, the
phenomena associated with the first two problems, the elementary
process models for these phenomena, and the basic equations
governing these phenomena are summarized in Fig. 3. These
phenomena are mostly divided into the elementary processes
concerning the flow of molten steel, equilibrium of stresses,
transport of energy and solute, electromagnetic induction, and
chemical reaction. They are solved by the equation of continuity,
Navier-Stokes equations, transport equations, Maxwell’s equations,
mechanical equilibrium equations, thermodynamic equilibrium
equations, and chemical reaction rate equations. Scientific compu-
tation is applied to predict how the levels of typical cast steel
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defects will change with operating conditions and to study the
optimum operating conditions of continuous casters. The plastic
working and forming processes are simulated to investigate the
assurance of dimensional accuracy and the establishment of oper-
ating conditions as required for the prevention of such defects as
cracks.

4. Future Outlook of Scientific Computation

Under the present circumstances noted above, scientific com-
putation is mainly applied to the simulation of material behavior
in material manufacturing processes. These applications are often
limited to the establishment of conditions for meeting qualitative,
dimensional, and geometrical requirements. Future targets are
virtual experimental laboratories and virtual factories for creating
new materials (see Fig. 4). To this end, it is necessary to: 1)
develop data bases containing the basic properties of materials or
the scientific computing techniques for predicting the basic prop-
erties of materials; 2) develop simulation techniques — or knowl-
edge databases — for relating basic properties, microstructures,

Phenomena concerning control of
nonmetallic inclusions

Deoxidation process
In ladle

Inclusion agglomeration, flotation, and separation

In mold

Inclusion agglomeration, flotation, and separation

v Electromagnetic stirring and braking
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Mold level fluctuation
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<Internal cracking >

Thermal stress during secondary cooling
Bulging

Straightening deformation

Roll misalignment

Roll reduction strain

Phenomena concerning prevention of segregation

Solidification microsegregation
< Surface segregation>
Behavior of initial solidifying shell
< Center line segregation>
Flow of residual liquid steel
Bulging
Solidification shrinkage
Soft reduction by walking bar or roll

Fig. 3 Phenomena in continuous casting, and their models and basic equations
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and high-order structures to performance; and 3) develop process
simulation techniques for predicting the microstructure and high-
er-order structure of materials to be produced, or build knowl-
edge databases for directly relating process conditions to material
microstructure, higher-order structure and performance.

The scientific computing techniques in category 1) cover the
analysis of electronic structures and the simulation of atomic-level
material behavior by the molecular dynamics and Monte Carlo

methods, and are considered not as difficult as the simulation
techniques in categories 2) and 3). As far as category 2) is con-
cerned, it will not be possible in the near future to analyze all the
phenomena concerned at the electronic and atomic levels by
simulation techniques, despite the marked increase in computer
performance. To achieve this task, it will be necessary to apply
continuum mechanics at the mesoscopic level, to develop meso-
scopic-level simulation techniques through application of the
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Fig. 4 Position of computational science in intelligent material design system (a)
and schematic of intelligent material design system to meet social needs (b)
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Monte Carlo method, and to develop hybrid simulation techniques
combining continuum mechanics and atomic-level simulation. If
an empirical data base of material functions is built by clarifying
chemical compositions microstructures, and higher-order structures,
it can be directly used as an aid in material selection and design.
Among such examples are corrosion, strength, and creep data
bases. As for process simulation in listed in category 3), the sim-
ulation techniques required will be able to clarify process con-
ditions for creating material microstructures and higher-order
structures similar to predicting the grain size of steel sheet to
estimate its mechanical properties.

The conventional prediction of mechanical properties involves
the calculation of working thermal history and the prediction of
the grain size or strength of a steel of given chemical compositions
from an empirical data base constructed from experimental
results. The general-purpose prediction of mechanical properties
without repeating such experiments for specific types of steels
calls for the development of computing techniques corresponding
to the simulation techniques used for computing the grain size of
steels and the tensile strength of steels from their grain size. If
computational science is put to effective use in making empirical

data bases more augmented, generalized, and universal for pre-
dicting the physical properties of materials and predicting the
functions of materials from their basic properties and conditions
as described in chapter 2, new products and processes can be
more rationally developed to meet social needs (see Fig. 4).

Lastly, it is hoped that many researchers will make direct use
of computed results as shared information when they interpret the
mechanisms controlling the appearance of properties and gov-
erning phenomena according to the new information obtained
from scientific computation. Now that scientific papers can be
contributed through computer networks, the attachment of
detailed computed results as appendices is expected to allow the
knowledge of many researchers to be shared and to accelerate
the progress of intelligent materials design.

The map of application examples of scientific computation in
Fig. 2 has been prepared in cooperation with the members of
Nippon Steel’s Research Group on Advanced Utilization of
Scientific Computation. The author would like to express his
appreciation for that.
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