A Very

NIPPON STEEL TECHNICAL REPORT No. 56 JANUARY 1993

UDC677.027.5 : 681.5

Fast Rule-Based Inference Engine for

Expert Systems

Abstract:

Yutaka Miyabe*!
Toshimitsu Baba*2

Yoshiteru Matsuo*?2
Shinya Mizuno*2
Osamu Dairiki*2

A inference engine under development for expert systems is outlined. The general-

purpose inference engine stoves knowledge in the form of production rules and uses

C++, an object-oriented language. Pattern matching and conflict vesolution al-

govithms of far higher performance than those of conventional inference engines

were developed, making it possible for the new inference engine to run fast ehough

to meet execution on large-scale and high-functionality knowledge bases that are

expected to increase in the future. In ovder to simplify knowledge description while

ensuring high descriptive capacity, the object-oriented concept is positively introduced

in the conventional if-then format.

1. Introduction

Nippon Steel has developed far more than 100 expert systems,
and many of them are in operation now. The trend of expert sys-
tem development is reviewed here from some examples of late.

Fig. 1 shows the purposes for which recent expert systems have
been developed. Many expert systems have been developed as in-
vestment items for improving plant productivity or software de-
velopment efficiency. This means that we have passed the boom
of expert system development and entered a settling period.

Fig. 2 classifies expert systems by the type of problem to be
solved. Analysis expert systems predominate, as typically seen
in fault diagnostic expert systems. There has been made a dras-
tic improvement in functions which was not seen a few years ago,
such as closed-loop automation for selecting and implementing
corrective measures after diagnosis. Planning exert systems are
increasing to meet material flow and production planning re-
quirements.

Fig. 3 shows the modes in which expert systems are implement-
ed. Reflecting the increasing scale and complexity of objects and

*1 Electronics & Information Systems Divisions Group
*2 Technical Development Bureau

problems, few expert systems are implemented in the classical
rule-based format. Instead, many expert systems are implemented
as hybrid systems through the combined use of procedural
programming (programming with a conventional procedural lan-
guage), application of fuzzy set theory, or utilization of neural
network technology. In Fig. 3, there is one expert system im-
plemented using only a procedural language. This expert system
was rule-based in the prototype development phase, but was
finally implemented using the procedural language alone. (The
system was judged to be an expert system despite its final im-
plementation style.)

As evident from the case studies, the future trend will be
toward more complicated and larger practical systems. For ex-
ample, planning and design systems to cover two or more proc-
esses or plants are considered to increase in number. These ten-
dencies brought to light such problems as low operating speed
and low integration of expensive commercial tools. In-house de-
veloped shells, like an analytical reasoning shell), a neural net-
work shell?, and hypothetical reasoning shell?, are beginning to
be utilized in practical systems.

Diagnostic systems supercede planning and other systems be-
cause of the difficulty of problem solving involved. Lately,
shells? that are fully equipped with inference knowledge about

NIPPON STEEL TECHNICAL REPORT No. 56 JANUARY 1993

Others (4)

Productivity
improvement

@7

Al technology &
acquisition (15)

Technical
development
efficiency .(18)

Fig. 1 Classification of expert systems by purpose
of development)

diagnosis and that can be utilized by field users themselves have
been put to use, improving the environment in which practical
systems can be efficiently developed and maintained. In contrast,
planning and design systems have no general-purpose problem
solving techniques. Hypothetical reasoning proposed as an Al
technique and optimization and mathematical programming pro-
posed as operations research techniques are available as general
algorithms. When these algorithms are applied to problem solv-
ing, however, they encounter many problems such as limited com-
puter capacity and formulation difficulty. Most of the present
expert systems are implemented as hybrid systems with problem-
solving methods researched and developed as required.

The expert system inference engine introduced here was
researched and developed for rule-based expert systems to dis-
charge the core functions of hybrid systems in view of the trends
noted above.

2. Outline of Inference Engine

2.1 Design philosophy
The inference engine developed as a prototype and tentative-

ly named YAPS (for Yet Another Production System) belongs

to the category of production systems. Production rules are com-
piled into a knowledge base and driven by the inference engine.

Since the if-then (production rule) format is a knowledge represen-

tation method already popular on the field and has a high

knowledge descriptive capability as required for an overall con-
trol and management core in future hybrid systems, it was adopt-
ed for the inference engine.

In view of the technical trends discussed above, the following
requirements were set for the YAPS:

(1) High speed: A speed at least several times as high as that of
existing inference engines is achieved. This requirement is set
in order to secure a practical speed that is high enough to uti-
lize a complex structure of knowledge (such as multiple con-
texts, hypothesis, and search).

(2) Adaptability to large-scale system: Production rules and data
(working memory) elements on the order of thousands can
be used, and a practically high enough inference speed can
attained when the scale of the system is increased further.

(3) Excellent portability and extensibility: The inference engine
is a basic building block of the system. It therefore can run
on many hardware platforms, be integrated with other soft-
ware, and be easily and safely customized itself.

2.2 System outline
The basic configuration of the inference engine is as shown

in Fig. 4. The system is composed of five main parts. The

Design (2)

Planning (10)

Fig. 2 Classification of expert systems by type
of problem to be solved

Procedural language (1)

Rule based

Analysis (24)

Fig. 3 Classification of expert systems by mode
of implementation

Knowledge base
descriptive language

Knowledge
base

C ++ language source code

Translator

=

Inference

H v engine kernel

Data base

“User ! :{ Shell l:

N
\d

rs

e/

Fig. 4 Cox{figuration of general-purpose inference engine

knowledge base created in a knowledge base descriptive language
is converted into the C++ language and utilized by the infer-
ence engine. The user interacts with the inference engine through
the shell*!,
2.2.1 Rule (knowledge) base descriptive language

The language specification to transfer the knowledge of the
human expert to the computer is a rule base descriptive language.
It is based on the production rule representation (the so-called
if-then format) that is the most typical knowledge representation
method. The descriptive language specification was brought closer
in similarity to the C++ language specification in order to in-
crease compatibility with the C++ language, which is the basi
language. :
2.2.2 Knowledge base translator

YAPS converts user-described knowledge into the C++ code,
compiles the code, and yields an executable expert system.
(Knowledge is not executed by a shell as in classical expert sys-
tems.) The rule base language is converted into the C++ lan-
guage by the knowledge base translator. The conversion as noted
here is not conversion of knowledge into a procedure (al-
gorithm)*2, Knowledge is declarative as it should be for an ex-

*| The scope of the name YAPS is fluid within the development team. YAPS
covers in a broad sense the entire scope of the system shown in Fig. 4 from
the standpoint of the user, and refers in a narrow sense to the translator
for converting the knowledge base into the inference engine kernel. In this
article, YAPS is used in the broad sense.

*2 The conversion refers to preliminary definition of data structure to be used
in drawing inferences as a C ++'language class, to array structure of infor-
mation necessary for the pattern matching algorithm, and to replacement
of the action part of a rule into a C++ language function.

pert system, and inference is executed in an event-driven
(nondeterministic) manner.
2.2.3 Data base

The translator parses the knowledge base and stores the results
in the data base. The C++ code is generated from the informa-
tion in the final stage of translation. The information is stored
in the data base, and overloading detection, sorting, and other
procedures are performed by the data base management system.
2.2.4 Inference engine kernel

The inference engine kernel is a drive mechanism for the ba-
sic functional elements of the inference engine, such as pattern
matching, conflict resolution, and rule firing. By linking it to the
knowledge base converted into the C++ code, a runtime mod-
ule is obtained for the inference engine.
2.2.5 Shell function

The shell function provides interactive interfaces not only for
the basic operation of inference but also for operations such as
tracing inference and displaying working memory in the develop-
ment phase*3,
2.3 Implementation and performance

At present, a prototype that fulfils the above-mentioned func-
tions is complete. System development and implementation at
the present stage are performed on an NS-SUN workstation,
which calls for the following environment:
(1) Sun workstation (machine: Sun4/40; SPI, Sun OS 4.0.3%4)
(2) Sun C++ compiler (version 2.0)
(3) Sun Japanese Open Windows*> (version 2.0; necessary only

when using the graphic shell)
(4) db_VISTA*S data base management system (version 3.10)

Fig. § shows the results of a run speed benchmark test. The
‘‘monkeys-and-bananas’® problem¥, a classical problem for

140
OPS83Version 2.2.] =—e—

120 Nippon Steel YAPS ~o—

100

[~
=3

(=23
=)

Computing time (s)

S
(=3

20

0 10 20 30 40 50 60 70
Number of monkeys

Fig. 5 Benchmark test results

NIPPON STEEL TECHNICAL REPORT No. 56 JANUARY 1993

rule-based reasoning, was used in the benchmark test*’. The
original problem involves one monkey and one bunch of bananas.
The knowledge base was modified for the benchmark test so that
two or more monkeys would compete for two or more bunches
of bananas. The numbers involved were changed to study the
correspondence between the data scale and the inference speed.
OPS83 (version 2.2.1), recognized as one of the fastest commer-
cially available systems, was selected as control for comparison.

Fig. 5 shows that YAPS is several times higher in absolute
run speed than OPS83, is small in speed drop with increasing
problem scale (scale factor), and expands its advantage with in-
creasing scale. These results indicate that the prototype satisfies
the requirements of system development.

3. Outline of YAPS Functions

The authors developed an original algorithm as central func-
tion for executing the inference cycle (match, select, and fire as
described below).

Generally, the inference engine provides the user with the func-
tions of proceeding with inference by matching the condition part
of the knowledge stored in the knowledge base (production rules)
with the data stored in the working memory and by firing rules
in a chain action.

The inference process consists of the following steps:

(1) Match: Comparison of the condition part of a rule with the
working memory (pattern matching)

(2) Select: Selection of rules and instantiations (conflict reso-
lution)

(3) Fire: Execution of the action part of a rule .

The inference process is usually performed until there are no more

rules that can be fired.

Pattern matching and conflict resolution are processing tasks
of very high load. Initial-stage production systems are reported
to have consumed as much as 95% of the total computing time
in pattern matching and conflict resolution®. Therefore, various
studies have been made on high-speed algorithms for pattern
matchings?. As a result, today’s high-performance inference en-
gines are based almost without exception on pattern matching
by the Rete® algorithm. The Rete algorithm is firmly established
as a general-purpose pattern matching formula. It has already
been improved from various points of view, leaving scarcely any
more room for further improvement to its fundamental structure.

As a breakthrough to this situation, a new algorithm, called
the D/O net®, was developed for the pattern matching section,
and another new algorithm, called the Y/M Select®, was devel-
oped for the conflict resolution section*®, The prototype was de-
veloped after repeating careful research on software design and
coding in the implementation phase. This effort resulted in achiev-
ing a basic performance that allows the high-speed running of
a large-scale system as indicated by the benchmark test results.
For lack of space, the details of algorithms are left for a separate

*3 Generally, a rule-based system makes it difficult to understand the process-
ing flow as compared with procedural processing, and easy-to-understand
information display is strongly required. YAPS allows the construction of
various shells (user interfaces) from a text-based console to a high-
functionality graphic console like the X-Window by utilizing libraries to pro-
vide such a function as required.

*4 Sun, SPI, and Sun OS are registered trademarks of Sun Microsystems In-
corporated.

*5 The Japanese Open Windows is a registered trademark of NIJHON SUN
MICROSYSTEMS K.K.

*6 db_VISTA is a registered trademark of Raima Corp.

*7 The monkey tries to reach for a bunch of bananas hanging from the ceiling -
using a ladder or chair.

*8 The D/O net and Y/M Select are tentative names used within the laboratory.

.NIPPON STEEL TECHNICAL REPORT No. 56 JANUARY 1993

report, and an outline description of YAPS with its features are
_presented hereunder.
3.1 System development by object-oriented description

YAPS is basically a rule base descriptive language like the one
used in many inference engines. Once data types and rules are
declared, inference proceeds with data tokens that are dynami-
cally created and removed during the inference. The data types,
which are also called templates, and the rules are approximately
declared as follows:

deftemplate monkey
{
class:
string description;
instance:
symbol holds;

defrule mbl: mb.do.holds
{

(monkey on == ceiling;);

|H

Deftemplate declares the data type, named monkey, and de-
fines slots such as ‘“description’’ and ‘‘holds.’” The rule declared
by defrule is named mb1 and can be fired when there is a mon-
key reaching the ceiling. If there is such an environment that the
graphic shell on the window system can be used, coding is not
required, and the development environment shown in Fig. 6 and
the run environment shown in Figs. 7 and 8 can be utilized*?.

YAPS is characteristic in that it makes positive use of object-
oriented styles for functions and description types while adopt-
ing a conventional knowledge representation method. Its features
are excerpted below from the language specification?.

3.1.1 Inheritance

Hierarchical inheritance can be utilized in the declaration of
templates and rules.

Templates may be inherited in the form of an entire type or
a specific slot. The template monkey declared in the foreground
window of Fig. 6(a) has three slots description, on, and holds
defined. The slot location defined by the parent :item is a slot
of the template monkey. All the templates declared for the par-
ent are inherited to the child as types. This is also true of slot
inheritance. As shown in Fig. 6(a), the user-defined slot type
OBJECTS can be declared by utilizing inheritance like the
template.

defsymbol OBJECTS: Parent_Symbol_Type
[}

Rules have their own hierarchical inheritance. The left-hand
sind (LHS) of a parent rule, including bound variables, is inherited
to the LHS of a child fule. The conditional statement

on == ceiling
is defined for the rule mb1 edited in Fig. 6(b). Together with the
conditional statement (shown in the lower part of the window)
inherited from the parent rule mb_do_holds, it constitutes the
actual LHS of the rule mbl.
3.1.2 Data structure

When a data type is declared as a template, it is still the defi-
nition of the type. Structured data is created only by using the
make function, for example. The data is generally deposited on

Fig. 6(a) Template declaration by graphic shell

*9 The templ.ate declaration is performed as shown in Fig. 6(a), and the rule
declaration is performed as shown in Fig. 6(b). The way an inference is car-
ried out using the knowledge is shown in Figs. 7 and 8.

NIPPON STEEL TECHNICAL REPORT No. 56 JANUARY 1993

a logical work space called the working memory.

Data are usually transitory information, and are generated and
deleted as the inference process proceeds. In their use in actual
systems, however, they are often utilized also as persistent data.
The data to be recognized as objects can be identified and directly
referred to when they are declared persistent.

Variables (slots) are classified into class variables and instance
variables. The class variable has such a value per template type
that is shared by all instances, whereas the instance variable has
a value intrinsic to each data (instance). Demons can be set for
these slots. The demon constantly monitors a slot and implements

an assigned task when the slot value is updated. It is a function
effective in ensuring data consistency, simplifying the descrip-
tion of rules, and improving the readability of rules. As shown
in Fig. 6(a), these functions can also be utilized as from the graph-
ic shell.
3.1.3 Modularization

The concept of module was introduced in response to the large-
scale and high-functionality knowledge base for which YAPS is
intended.

Rules can be grouped according to context and importance.
This function is significant in organizing the structure of the rule

= aotive, upqrnlqnnww, i

atus
asdar,
focatien = $2, fooation J3

Fig. 6(b) Rule declaration by graphic shell

i
datpracedura (nit.m()

o3k {sbjest nene = laddar, location = 9.5,

on = tleor, veight = light);
nake (nankey flocatlon = 6.7, on = couch, hol all);
naks {onmt nae = bananas, on = og!ling, Inna(lon 10,
nnku [goal

cout « m\m Nunhor of Additional Menkays and Banenas @
Int

ummln Dﬂ}l.w,

cln > add_nww,

far(Int I=1; I(:muun 1)

Toake (nnnkay lumlm s T, on = couch, nnlas LIDH
BbjLoo = add_nun

OhJLoc = Objloc + ﬂb]LﬁW 015

tnaka (objeot ma = henanas, on = celling,

w)
J

nake thmt nane = couch, location = 5.7‘ ulm = heavy):

0);
status = aotive, operation = do_holds, objeot = bansnas);

‘tnake (goal smus mlvc nn:rulon do_holds, object = bananas);

Fig. 6(c) C-++ description by graphic shell

NIPPON STEEL TECHNICAL REPORT No. 56 JANUARY 1993

base and improving the readability of the rule base and, at the
same time, in improving the inference speed by utilizing only rule
groups necessary for the time being. Hierarchical inheritance,
adopted for the rules and templates, can be introduced also for
this purpose when necessary.

A module of greater significance is relationship with other lan-
guages, including the C++ language. Conversation between a
rule-based system and another functional (program) module writ-
ten in other language is performed on a structured data basis.
The global data type is available as a means of access from other
languages. This is template data globally declared in addition to
the above-mentioned persistent declaration. As in the case of the
rule-based system, its contents can be updated when referred to
by name from other modules. C++ direct coding provides ac-
cess from the rule-based system. Fig. 6(c) shows the right-hand
side (RHS) of a rule. The portion enclosed with double question
marks (??) is directly written in the C++ language.

3.2 Example of implementation
The way the modified monkeys-and-bananas problem is solved

in the benchmark test is as shown in Figs. 7 and 8. Fig. 7 shows
a working memory browser. A menu is shown at the upper left,
and Working Memory Operations (the title at the upper part of
the window) is opened as entry pane. A data element of the mon-
key type is being newly created in Make Working Memory, and
the contents of an existing data element of the object type are
being changed in Modify Working Memory. Fig. 8 shows a rule
browser. Pattern matching situation browsing and rule control
(such as fire priority modification) are being performed by oper-
ation on a rule group basis (Rule Group Display and Rules List)
and by direct operation on specific rules (Rule Display).

. 3.3 Important optional functions

The distribution of YAPS has been started only for in-house
trial use. Its basic type is a production system having the above-
mentioned features. YAPS has event-driven forward reasoning
by the pattern matching function and conflict resolution like that
of MEAY.

Hypothetical reasoning, backward reasoning, and Japanese
support can be established as options. Since YAPS is developed

ofermi el

feonalz vls

Fig. 8 Runtime rule br

SORHAT IRy

owse!

in C++, an object-oriented language, these optional additions
can be very easily made through a link with the corresponding
C++ class library and the inheritance of basic classes.

The shell can be easily modified into a simple version without
graphics. The simplified version of YAPS consists of the C ++
code after translation of the knowledge base and the original in-
ference engine. It can be implemented on hardware platforms
that can utilize the C++ or C language and can provide high
software portability.

4. Conclusions

The general-purpose 'inference engine, tentatively named
YAPS and developed for expert systems, has been outlined above.
Although only its prototype is complete now, it has been con-
firmed that YAPS is capable of performing several times faster
than commercial inference engines even when utilized in large-
scale systems.

In its continued evolution, emphasis will be placed on the im-
provement of the originally developed algorithm to serve as its
core, and on its functional enhancement as a practical inference
engine. In developing a higher-level version of YAPS, we will
strengthen the object-oriented characteristics of YAPS, realize
an integrated utilization environment with other systems and pro-
grams, and develop YAPS as a functional module of a distribut-
ed cooperative system.

References

1) Minami, E., Miyabe, Y., Dairiki, O.: ESTO: A Practical Environ-
ment for Industrial Diagnostic Systems. Proc. Industrial & Engineer-
ing Applications of Artificial Intelligence. 1990, p. 684-691

2) Takada, H.: Development of Parallel Processing Neural Net Simula-
tor. 2nd Transputer/Occam Int. Ntl. Conf. 1989, p. 123-132

3) Ohgai, H., Mishima, Y., Harada, T.: Realization of High-Speed
Hypothetical Inference Mechanism. Turing Machine. 2 (5), 20-30 (1989)

4) Brownston, L. et al.: Programming Expert Systems in OPS5. Read-
ing, Addison-Wesley, 1986, p. 62-71

5) McDermott, J., Newell, A., Moore, J.: The Efficiency of Certain
Production System Implementations. In Waterman, D.A., Hayes-Roth,
F.: Pattern-Discreted Inference Systems, New York, Academic Press,
1978, p. 155-176

6) Forgy, C.L.: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19, 17-37 (1982)

7) Tano, S., Masui, S., Sakaguchi, S., Funabashi, M.: A Fast Pattern
Match Algorithm for a Knowledge Based System Building Tool-
EUREKA (in Japanese). IEIC Trans. 28 (12), 1255-1268 (1987)

8) Nippon Steel Corporation: Private communication, September 1991

9) Nippon Steel Corporation: Private communication, September 1991

NIPPON STEEL TECHNICAL REPORT No. 56 JANUARY 1993

