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Abstract

Grain growth occurring in the steel manufacturing process is one of the most

important phenomena in order to control the polycrystalline microstructure. Due to

its heavy computational cost, phase-field(PF) simulations were limited to 2D systems.

Recently, 3D PF simulation of grain growth is becoming practical owing to the

development of efficient simulation algorithms and the application of parallel

computation techniques. In this manuscript, we will report simulation results for the

normal grain growth and the system containing finely dispersed second-phase

particles. Especially, this manuscript highlights the difference between the 2D and

3D simulation results.

1. Introduction
The crystal structure of a polycrystalline material is a key factor

in determining the physical properties of the material. Also, the growth
of grains that occurs in the steel manufacturing process is one of the
most important metallurgical phenomena from the standpoint of con-
trolling the crystal structure of steel. It is, however, difficult to incor-
porate the geometric characteristics of crystal structures directly in
an analytical theory on grain growth.1-5) In this respect, the numeri-
cal analysis of grain growth by computer simulations is generally
considered promising, and various simulation models, including the
Monte Carlo (MC) method, have been proposed.6-19)

In recent years, attempts have been actively made to apply the
phase-field (PF) method, which has progressed remarkably in the field
of computational material science, to grain growth simulations.14-19)

The most important advantage of using the PF method for modeling
is that since the crystal interfaces are naturally introduced into the
model as parts whose order parameter gradient is not zero, it is un-
necessary to trace the interfaces themselves. In addition, by taking
into account the anisotropy of interfacial energy and mobility, it is
possible to make a more realistic analysis of grain growth. Further-
more, by adding concentration field as an extra order parameter, it is
possible to naturally introduce the long-range diffusion that is re-
quired when modeling the segregation of a solute element,20) or the

coarsening of a dispersed secondary phase.21)

Despite the above advantages, the application of the PF method
in grain growth simulations had been almost limited to 2-D simula-
tions because of the heavy computational cost. However, with the
improvement in simulation algorithms,22-24) coupled with the appli-
cation of parallel computation techniques in recent years,25-27) there
are more and more reports on the application of the PF method in
three-dimensional simulations. This paper describes the results of
the grain growth simulations that the author has so far carried out
using the PF method,26, 27) with the emphasis on the difference be-
tween 2-D and 3-D simulation results.

2. Model
2.1 Phase-field polycrystalline grain growth model

The PF method is a simulation model based on non-equilibrium
thermodynamics. It first attracted attention as it permitted reproduc-
tion of the complicated structural formation of dendrite. Today, the
scope of its application has been expanded to diffusion phase de-
compositions (nucleation, spinodal decomposition, Ostwald ripen-
ing, etc.), order-disorder transformation, various types of domain
growth (dielectric substance, magnetic substance), martensitic trans-
formation/shape memory, and solid phase crystal growth/recrystalli-
zation, etc. Thus, the PF method is becoming a very effective simu-
lation method for prediction and analysis of microstructural forma-
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tion at both the nano and meso scales.28, 29)

The polycrystalline grain growth model applying the PF method
is a model for predicting the behavior of grain growth on the as-
sumption that the interface moving velocity is proportional to the
local mean curvature.30) Ordinarily, the model expresses grain orien-
tation using many order parameters (multiple orientation-fields model:
MOFM)14-18) or only one order parameter (for 2-D simulations) (single
orientation-field model: SOFM).14-19) In terms of the computational
cost involved, SOFM is advantageous. However, taking into consid-
eration the expandability to a 3-D system, the ease of introduction
on interfacial energy/mobility anisotropy, and the coupling with other
order parameters such as concentration field of solute, MOFM is
more practical at present. All the simulation results described in this
paper were obtained using MOFM. As a representative example of
MOFM, the multi-phase-field (MPF) model developed by Steinbach
et al.31) is outlined below.

In the MPF method, a set of continuous order parameters φ
i
 (i =

1, 2, ..., N) is defined as distinguishing between virtual grain orienta-
tions, with N denoting the total number of order parameters. The
value of φ

i
 (r, t) indicates the probability of the existence of a grain

having grain number i at position r and time t. Within the grain la-
beled φ

1 
, the absolute value for φ

1
 is 1, while all other φ

i
 for i ≠ 1 is

zero. The term “virtual grain orientation” was used above because it
does not indicate the actual grain orientation: it is used simply to
distinguish between different regions. It should be noted, however,
that it is possible to associate virtual orientations with actual grain
orientations and thereby perform an analysis taking the actual orien-
tations into consideration.32)

In this model, the sum of phase fields at any position in the sys-
tem is conserved.

φi r, tΣ
i = 1

N

= 1 (1)

Here, we outline the equations from the MPF model, which are
essential for this study. The model details are described in Reference
33). When considering the grain growth only, the set of governing
equations to be solved is as follows.

∂φi
∂t

= −
2

n r, t
sij M ij

δF
δ φi

− δF
δ φ j

Σ
j ≠ i

N

, i = 1 n (2)

Where F is the free energy functional of the system and M
ij
 is the

mobility of interface in the PF method. From the above equation, the
following equation can be derived.

δF
δ φi

=
ε ij

2

2
∇2 φ j + ωij φ jΣ

j ≠ i

N

+ f i
E

(3)

Where ε
ij
 is the energy gradient coefficient, ω

ij
 is the double-well

potential depth, and f
 
E
i 
 is the excess free energy density of grain

having grain number i. By adjusting ε
ij
 and ω

ij
 simultaneously, it is

possible to control the interfacial energy.33) In addition,

n r, t = si r, tΣ
i = 1

N

. (4)

Where s
i
 (r, t) is a step function that satisfies s

i
 (r, t) = 1 when φ

i
 > 0

and s
i
 (r, t) = 0 otherwise.

By obtaining the numerical solution to Equation (2) using meth-
ods such as the differential method, it is possible to predict the be-
havior of grain growth.
2.2 Improving simulation efficiency

As a problem involved in the MOFM polycrystalline grain growth

model, the coalescence of grains with the same grain number is cited.
This is a problem common with the MC method and MOFM. In 2-D
simulations, in order to prevent the total number of orientations, N,
from influencing the rate of grain growth, it is necessary that N be
100 or more.22) With the MC method, for example, the efficiency of
simulation decreases as N is increased. This problem can be solved
by improving the algorithm of state transition. With MOFM, how-
ever, the memory capacity required increases in proportion to N and
the computing time increases in proportion to the square of N in the
worst case. This means that using an extremely large value of N is
impracticable. Therefore, it is necessary to work out a method of
preventing the coalescence of grains without significantly increas-
ing the value of N.

Taking advantage of the fact that the free energy of a system
remains the same even when the orientation is switched between
equivalent crystal orientations during simulation, Krill et al.22) im-
proved the efficiency of simulation by reducing the value of N re-
quired. Suwa et al. extended the above improvement in simulation
efficiency to a system which takes into consideration the anisotropy
of the interface,25) and a system which contains dispersed particles.26)

After that, more sophisticated algorithms were devised by Vedantam
et al.23), Gruber et al.,24) and Kim et al.18) Their algorithms have elimi-
nated the problem of “coalescence.” It is interesting to note that the
above refined algorithms, which are the same in principle, were de-
veloped by three different study groups around the world at almost
the same time.

3. Simulation Results
3.1 Simulation of normal grain growth of single-phase material

This section describes the results of our simulation of a single-
phase material in which the same interfacial energy and mobility
were given to all the interfaces.27) Those conditions represent the most
simplified, and most important, system in studying the behavior of
polycrystalline grain growth. Whenever a new simulation model is
developed, therefore, this system is used as the primary benchmark.

Fig. 1 shows the simulated time evolution of the microstructure.
The number of grains, N

g
, is 35,174 at t = 500 Δt and 1,185 at t =

10,000 Δt. With the PF method, by setting the parameters properly,
it is possible to carry out a numerical simulation taking into account
the actual time and the actual space size. In this report, however,
with preference given to simplicity, the time is expressed by time
differential interval Δt and the space size is expressed by space dif-
ferential interval Δx. Fig. 2 shows the time evolution of the square
of average grain radius <R>. The obtained result can be approxi-
mated by a straight line and the rate of grain growth meets the well-
known one-half power law.

In the case of normal grain growth, it has been known that the
“steady state,”3) in which the size distribution function normalized
by average grain diameter is time invariant, is reached after a certain
simulation time. For the purpose of comparing the size distribution
function in the steady state, Fig. 3 shows the result of our simula-
tion, the result of a simulation performed by Kim et al. using a simi-
lar model,18) and the result of an mean field analysis by Hillert et al.3)

It can be seen from the figure that the grain size distribution we ob-
tained is somewhat wider and more symmetrical than that of Kim et
al. This slight difference in grain size distribution is considered due
to an imperfect steady state in the simulation performed by Kim et
al.27)

Recently, 3-D microstructural observations are also being made
possible. However, microstructural photos obtained by ordinary ex-
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Fig. 1   Simulated microstructural evolution in 5123 cells
(a) 35,174 grains at t = 650ΔΔΔΔΔt and (b) 1,185 grains at t = 10,000ΔΔΔΔΔt

Fig. 2   Square of average grain radius <R>2, versus simulation time
The thick straight line is the linear least-square fitting for a simulation
run.

Fig. 3 Steady-state grain size distributions from various phase-field
simulations of the 3D normal grain growth
Kim et al.18) (MPF model, symbols were taken from Fig.15 in Ref.
18) and our study (MPF model + APT algorithm). The thick curve
depicts the 3D distribution predicted by Hillert theory3).

Fig. 4 Steady-state grain size distributions reconstructed from a set of
2D slice of 3D microstructure

perimental observations show 2-D sections of 3-D structures. For
the purpose of comparing a 3-D structure and its 2-D section, Fig. 4
shows the grain size distribution reconstructed from the set of 2-D
slices of a 3-D structure obtained by our simulation. A comparison
between Fig. 3 and Fig. 4 reveals that the grain size distribution shifts
toward the small size for the 2-D slices. Assuming the average grain
radius obtained from 2-D slices as <R

2d
>, <R> ≈ 1.18 <R

2d
>. It should

be noted here that the steady-state grain size distribution obtained in
2-D simulation is different from the one reconstructed from a 3-D
structure or its 2-D section.3, 18)

Next, we consider the behavior of individual grain growth. In the

mean field analysis by Hillert, the growth rate of individual grains is
expressed by the following equation.3)

dR
dt

= αM p σ
1
Rc

− 1
R

: R dR
dt

= αM p σ
R
Rc

− 1 (5)

Where R is the radius of the grain under consideration and R
c
 is the

critical grain radius. From the above equation, grains larger than R
c

grow, whereas grains smaller than R
c
 shrink. In addition, M

p
 denotes

physical interface mobility, σ is the interfacial energy, and α the
correction value (≈

 
1) for taking into consideration the detailed geo-

metric influence not included in the mean field approximation. In
order to evaluate the above equation, Kim et al. carried out an analy-
sis using the relationship between RdR/dt and R/<R>.18)

By following Kim’s treatment, we show the relationship between
RdR/dt and R/<R> for individual grains at t = 10,000 Δt in Fig. 5.
From the figure, the value on the x-axis at the point of intersection
with the approximate straight line, or the critical grain radius, is 1.15.
This result closely reproduces the result obtained by Kim et al. and
agrees very well with the result of Hillert’s mean field analysis, R

c
 =

9/8 <R> = 1.125 <R>. Therefore, in the 3-D crystal grain growth, it
is possible to judge the expansion or shrinkage of each individual
grain using the radius, R, of the grain. On the other hand, as de-
scribed in Reference 18), it is already known that when the behavior

Fig. 5 Simulation test of mean-field approximation [Eq.(5)] in the 3D
normal grain growth
The results obtained from a simulation run at t = 10,000ΔΔΔΔΔt is
shown in this figure, where 1,185 grains are shown as dots in a
RdR/dt vs R/<R> plane. The dR/dt values were measured from
the volume changes during a single time step. The thick straight
line is the linear least-square fitting.
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Fig. 6 Distributions of grains with the number of faces per grain in the
3D simulations
Kim et al.18) (MPF model, symbols were taken from Fig.16 in Ref.
18) and our study (MPF model + APT algorithm)

of grain growth in a 2-D system is considered, whether each indi-
vidual grain grows or not is determined by the number of sides mak-
ing up the grain and the argument on the use of the radius, R, men-
tioned above cannot be supported.

Next, we discuss a matter relating to the number of faces of the
grains. The average number of faces that was 14.0 at t = 500 Δt
gradually decreased with simulation time to 13.7 at t = 5,000 Δt.
These values agree very well with the results obtained by many nu-
merical simulations and with the results of an experimental observa-
tion carried out recently.34) Fig. 6 shows the distribution of grains
with the number of faces per grain. Such geometrical information is
extremely difficult to deal with by an mean-field analysis. With mi-
crostructural simulation techniques such as the PF method, it is pos-
sible to handle even geometrical information directly. For the pur-
pose of comparison, the results obtained by Kim et al. are also shown
in Fig. 6. With respect to the number-of-faces distribution too, the
result of our simulation agrees well with the result obtained by Kim
et al. Then, at t = 6,000 Δt, the linear relation similar to the Aboav-
Weaire relations is calculated by the linear least-square fitting for
simulation results using the same method as described in Reference
25).35, 36) As a result, m (Nf ) × Nf = 13.7 Nf + 24.7 was obtained. This
value is very close to m (Nf ) × Nf = 13.6 Nf + 27.2 given by Refer-
ence 25), where m (Nf ) denotes the average number of faces of grains
adjoining a grain having Nf faces.
3.2 Simulation of grain growth considering pinning by dispersed

particles
This section describes the results of our simulation of grain growth

when there are fine dispersed particles of precipitates, nonmetallic
inclusions, etc. The “pinning” of crystal growth in a system in which
dispersed particles exist is an important means of controlling the crys-
tal grain size. It is also an important phenomenon industrially. More
than a half century ago, Zener reported that when inactive, non-co-
herent, second-phase particles having a radius of r were dispersed in
a polycrystalline structure, the average grain size, R, of the parent
phase in the ultimate pinned structure in which the grains stopped
growing completely was given by the following equation.37)

R = a r
f b (6)

Where f is the volume fraction of the second-phase particle, and a
and b are constants. Under the Smith-Zener assumptions, a = 4/3
and b = 1.38) Since then, many researchers, including Hillert, have
proposed modifications to Equation 6.39-47)

In addition, experiments have been performed to validate the

above equation. Due to the difficulty in 3-D observation of the ra-
dius and volume fraction of a small amount of fine particles dis-
persed in a microstructure, numerical simulations using the MC
method,48-54) or the front tracking method,55, 56) have been actively
carried out since the 1980s. When it comes to discussing the ulti-
mate pinned structure, however, the correct result cannot be obtained
unless the system is of considerable size. It requires huge computer
resources and much computing time. Besides, with respect to the
value of b in the ultimate pinned structure, the results of 2-D and 3-
D simulations differ markedly. Concerning 3-D simulations, in par-
ticular, they have not yet been completely validated.38)

This section describes the results of our application of the PF
method and parallel computation technique to Zener’s problem of
pinning in a 3-D system.26) In the simulation, we used the model of
Fan et al., a representative MOFM modified by Moelans et al.55, 56)

Concerning the radius of dispersed particles, we found a point of
compromise between simulation efficiency and accuracy by assum-
ing r = 2.68 (V = 81 differential lattices).56) In view of the limited
computer resources, the volume fraction, f, of dispersed particles was
assumed to be in the range 0.04 to 0.12. For detailed simulation con-
ditions, see Reference 26). In this report, the simulation results ob-
tained when the dispersed particles neither moved nor grew are de-
scribed. When the PF method is used, however, it is possible to per-
form a simulation taking into consideration the coarsening of dis-
persed particles as well.21)

Fig. 7 shows the time evolution of the microstructure when the f
of dispersed particles was assumed to be 0.04. In the figure, the black
dots are dispersed particles. Fig. 8 shows the time evolution in aver-
age grain radius of parent-phase grains for various volume fractions,
f

 
s, of dispersed particles. At the early stages, the rate of grain growth

does not change noticeably since the grain size is small, the number
of particles making contact with each grain is small and the interfa-
cial curvature is large. With the growth of grains, the rate of growth
decreases and ultimately, the growth stops. Fig. 9 shows the ultimate
pinned microstructures for various volume fractions of dispersed
particles.

With the probability of the total number of dispersed particles
being present at grain boundaries of the parent phase assumed to be
Φ, Fig. 10 shows the probability of two particles on the interface as
Φ

2
, the probability of three particles on the edge as Φ

3
, and the prob-

ability of four particles at the corner as Φ
4
. All those probabilities

increase with the increase in f. On the other hand, the value of Φ is
much smaller than the value obtained by a 2-D simulation despite
the fact that the same model parameters were used.56) The reason for
this is that, as pointed out in Reference 56) also, the geometrical
arrangement of dispersed particles and interfaces that gives the maxi-
mum pinning stress differs between 2-D and 3-D simulations; that
is, the interfaces can flee from the dispersed particles more easily in
the 3-D simulation.

The value of Φ shown above is also small compared with the
result of a 3-D MC simulation by Anderson et al. who treated each
dispersed particle as one lattice point and assumed the lattice tem-
perature to be zero.49) Under their simulation conditions, the growth
of grains might have been restrained by artificial facets introduced
as a result of the presence of dispersed particles. In order to avoid
that problem with the MC method, it is necessary not only to in-
crease the size of dispersed particles sufficiently but also to intro-
duce a heat fluctuation by raising the lattice temperature.54) In a simu-
lation using the PF method, on the other hand, the interfacial curva-
ture can be expressed accurately and hence, it is possible to obtain a
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Fig. 7   Simulated microstructural evolution in 4003 cells for f = 0.04

Fig. 8 Average grain radius <R>, versus simulation time for different
particle concentrations

Fig. 9   Pinned microstructures for different particle concentrations f

Fig. 10 Fraction of particles on grain faces, edges and corners in the
pinned microstructure versus particle concentration f

value of Φ comparable to that shown in Reference 54) without intro-
ducing any heat fluctuation.

Fig. 11 shows by means of a log-log graph the relationship be-
tween the average grain radius <R> of the parent phase in the ulti-
mate pinned microstructure divided by dispersed particle radius r
and the dispersed particle volume fraction f. By applying the least
square method to the simulation result and obtaining an approximate

line, the following relationship was obtained.

R = 1.42 r
f 0.87

(7)

The above relationship is close to the Smith-Zener theory and the
result of an MC simulation that assumed a sufficiently large dis-
persed particle size and introduced a heat fluctuation.54)

Next, to evaluate the time evoluation of grain size distribution
function, the microstructural entropy was defined by the following
equation.57)

ME =
gi ln giΣ

i

giΣ
i

(8)

Where g
i
 denotes the proportion of grains which belong to the i th

group when the crystal grains are normalized by the average grain
size with g = R/<R>. Fig. 12 shows the time evolution of microstruc-
tural entropy for various values of f. When f = 0, the microstructural
entropy gradually approaches a certain value through the transition
region. In a system containing dispersed particles, however, the en-
tropy decreases with simulation time and the size distribution func-
tion actually narrows down. The reason for this is that since the aver-
age driving force decreases with the progress of grain growth, grains
appear which can no longer shrink despite the fact that they are suf-
ficiently smaller than the surrounding grains.

As far as our simulation results are concerned, when f = 0.04,
there were no grains with a radius of 0.3 <R> or less in the ultimate

Fig. 11 Average grain radius of the pinned microstructures versus
particle concentration f
For comparison, Zener relation37) and the relations obtained from
Monte Calro simulations49, 54) are plotted.



NIPPON STEEL TECHNICAL REPORT No. 102 JANUARY 2013

- 24 -

Yoshihiro SUWA
Senior Researcher, Dr.Eng.
Sheet Products Lab.
Steel Research Laboratories
20-1, Shintomi, Futtsu, Chiba 293-8511

Fig. 12 Temporal evolution of the microstructural entropy ME, for
different particle concentrations

pinned microstructure. The above phenomenon in which the size dis-
tribution function narrows down in grain growth taking dispersed
particles into consideration has also been observed in numerical sim-
ulations using mean field approximation.58, 59) On the other hand, in
the case of 2-D simulations, as reported in Reference 56), the size
distribution function widens or narrows according to the initial ar-
rangement of dispersed particles and the value of f.

4. Conclusion
We have so far described the results of our grain growth simula-

tion by applying the PF method to the normal growth of grains in a
single-phase material and the pinning phenomenon of a system con-
taining fine dispersed particles, with the focus on the differences
between 2-D and 3-D simulations. With the progress of 3-D struc-
tural analysis techniques in recent years, attempts are being made to
experimentally clarify 3-D geometric characteristics of polycrystal-
line microstructures.34) The application of such experimental analy-
ses in combination with mathematical techniques and numerical simu-
lations will help clarify the mechanisms of structural formation of
polycrystalline materials. For example, we consider that it will con-
tribute in the development of a process for manufacturing polycrys-
talline structures with the desired grain size distribution and grain
orientation distribution. In many cases, evaluating the material prop-
erties of a polycrystalline structure requires the polycrystalline struc-
ture itself as an input value. In this respect, the structure obtained by
a simulation using the PF method can be used as that input value.
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