

図1 ブルーカーボンのメカニズム

植物は光合成によって大気中の CO_2 を吸収し、炭素を蓄えます。アマモなどの海草、コンブなどの海藻も CO_2 を吸収する植物であり、 それらによって海中に取り込まれる炭素のことを「ブルーカーボン」と呼びます。海中で CO_2 を吸収した海草や海藻は枯死後に海底に 堆積して炭素を貯留します。

図2 2030年のCO₂吸収量の見込み

人工林が成熟期を迎え、森林のCO2吸収量が急速に 減少しつつあるなかで、ブルーカーボン生態系による CO2吸収の重要性がさらに増すと考えられています。

除去量を差し引きゼロに

から90

どの産業セクターに

)成長はあ

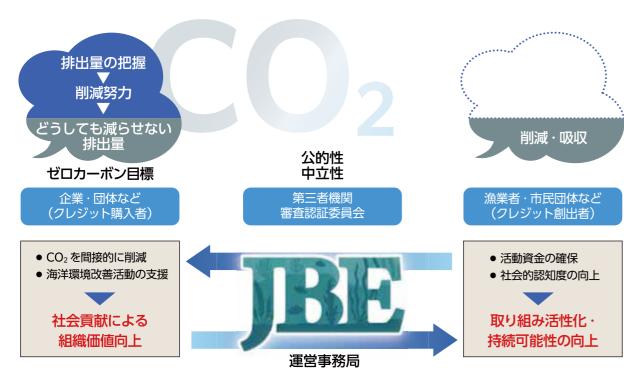
例えば、 までに現在の

CO2の新たな吸収源として注目が集まっているブルーカーボン(図1)。 海草や海藻などによって海で吸収・貯留される炭素のことで、気候変動 対策のみならず、吸収量の取引(カーボンクレジット)による経済効果も 期待されています。海洋国家日本におけるブルーカーボンの可能性に ついて、ジャパンブルーエコノミー技術研究組合の桑江朝比呂理事長 に解説していただきました。

ジャパンブルーエコノミー技術研究組合 理事長 桑江 朝比呂氏

新たなCO。吸収源

ブルーカーボン


世界をリードする

日本の技術で

Interview

1995年京都大学大学院農学研究科修了後、運輸省港湾 技術研究所研究官。2022年国立研究開発法人海上·港湾 抗空技術研究所港湾空港技術研究所沿岸環境研究領域長 2020年国土交通大臣認可法人ジャパンブルーエコノミー 技術研究組合理事長(ともに現職)。

図4 ブルーカーボンを活用したクレジット制度(Jブルークレジット®)

Jブルークレジットは、ジャパンブルーエコノミー技術研究組合(JBE)から独立した第三者委員会に よる審査・認証意見を経て、JBEが発行し、管理する独自のクレジットです。2021年度の3プロジェ クトに加え、22年度には日本製鉄(株)と増毛漁業協同組合による「北海道増毛町における鉄鋼スラ グ施肥材による海藻藻場造成」をはじめ18プロジェクトが新たに登録・認証されました。

る計算です。 であった企業も含めて、 あるブルーカーボンあるいはカーボンクレジッ れば経済効果は莫大です。こうした将来性の 量はもっと増やせると考えています。 7万2000円程度でしたし、 くして、 の吸収量で1000億円の経済効果が生まれ が本格的に稼働すれば、年間1000万トン **度となっています。将来、沖合での海藻養殖** 収系クレジットですと1トン当たり1万円程 ト市場に参加しようと、 ノミー技術研究組合には何百社からも問い合 J ブル· ークレジットは、 ークレジットでは1 国が運営するコン

ちなみに2021年度の実績と ジャパンブルーエコ これまで海とは無縁 沖合での吸収 トン当たり そうす

> ルジャパンで取り組まなくてはなりません。 C0⁻が海のどういった場所でどれだけ吸 海藻の沖合養殖はまだ技術課題が多く、 イブリッドインフラの活用

でいます。 どで同時に海藻を育てるハイブリッドインフ ラがつくられると吸収量は大きく増やせます。 収量がありますが、 収されるのか、そのメカニズムの解明も進ん カーボンの吸収源として活用できるようにす ウィンドファー 工構造物は入っていません。 した海洋構造物に海藻養殖を併設させ、ブ また、今後は洋上風力発電が増え、 現 在**、** ムが誕生していきます。 沿岸部で100万トンの吸 それは自然海岸だけで人 例えば防波堤な 各地に そう

000 ジット取引で 億円以上の経済効果

ます(図4)。 りたい企業とのクレジット取引を仲介してい レジット®」として認証し、CO▽削減を図 などで生まれたCO゚吸収量を「亅ブル 組合では現在、藻場や干潟での保全再生活動 します。ジャパンブルーエコノミー技術研究 年に4件の取引があり、 カーボンは大きな経済効果をもたら まだ試行段階ではありますが、 22 年 に は 21

件に増加しました(図5)。

23年以降も増えて

いくと予想しています。

クレジットの相場は、

現在は森林などの吸

自然物と人工物の

究組合が中心となってクレジット制度を本格 においてもジャパンブル リークレジットが主流となっています。日本 はのメリットも大きく、世界的にもボランタ に対して素早く対応できるなど、民間ならで

きたいと考えています。 運用させ、経済と環境の好循環をつくってい ーエコノミー技術研

⊕್ಚಳ

図5 Jブルークレジット®認証数		
年度	認証サイト数	認証量 (トン CO ₂)
2020	1	22.8
2021	4 ^{*1}	80.4
2022	21*2	3,733.1
累積	22 *³	3,836.3

- 21年度は20年度に登録した1プロジェクトに加え、 新たに3プロジェクトを登録し、計4プロジェクトを実施。
- 22年度は21年度に登録した3プロジェクトに加え、 新たに 18プロジェクトを登録し、計 21プロジェクトを実施。
- ※3 20~22年度の3年間に計22プロジェクトを登録・実施。

CO2の吸収源へ 沖合の海藻養殖場を

到底足りず、 ン程度しかありません。目標とする数値には るのですが、その吸収量は年間100万ト 沿岸部の藻場などが主要な吸収源となってい 海におけるCO゚吸収の現状を見てみると、

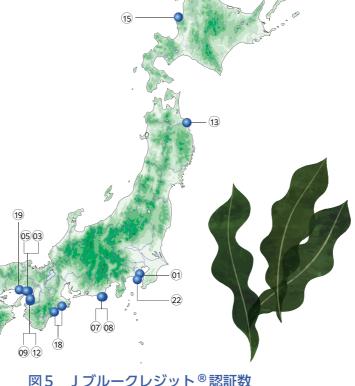
BC 生態系外

(陸棚、深海)

たび放出してしまうと考えられてきました。 CO゚を吸収しても海底に貯留できず、 砂地に根を張るアマモなどの海草と違って、 するコンブやワカメなどの大型海藻は、泥や だことがあげられます。これまで岩礁に付着 られるようになったのは、海藻の研究が進ん し科学的な解明が進み、

があります。 今後は沖合も活用していく必要

大気中の CO₂


BC 生態系内外の水中 (難分解性溶存有機物)

輸送

沖合がブルー カーボンの対象として考え 海藻の一部が流 ふた

> どがわかってきました(図3)。 分解性の溶けた有機物を放出していることな 深海に沈んで堆積したり、海藻の成長中に難 れ藻として沖合に漂流し、分解されないまま

どが求められてきましたが、ブルー 用としてはどれだけ速く大きく育つかが重要 藻を食べてきた歴史があるので、 合における海藻の大規模養殖場の可能性を検 技術を持っている日本が世界をリ となります。 は食用として味の良さや病気に対する強さな 株と品種改良技術を持っています。これまで 常に大きいと言えます。 が広く、ブル・ 討しています。日本はEEZ(排他的経済水域) パンブルーエコノミー技術研究組合では、 こうした科学的な知見を背景に、現在、ジャ そうした株の開発においても、 ーカーボンのポテンシャルは非 ま た、 食用として海 多くの有用 沖

ブルーカーボン(BC)生態系

海草が生息する砂泥質の海底にブルーカーボンが貯留することは知られていたのですが、

岩礁に生える海藻は炭素の貯留ができないと考えられていました。しかし、流れ藻となった

海藻は、遠く沖合まで漂流して、やがて寿命を終えて深海の海底に沈み堆積し、炭素として

海底堆積物

図3 海藻由来のブルーカーボン

貯留されることがわかってきました。

年度	認証サイト数	認証量 (トン CO ₂)
2020	1	22.8
2021	4*1	80.4
2022	21*2	3,733.1
累積	22 *³	3,836.3

7 季刊 ニッポンスチール Vol.15

るボランタリークレジットであることもポ

一般的には国主導のほうが、

プライアンスクレジットではなく、

民間によ

ることも考えています。

土木と水産とエネルギ

ーボンのさらなる拡

その3つを組み