
地震 緊急丁事 老朽化

トウシート®、ストランドシート®、トウグリッド®

日鉄ケミカル&マテリアル(株)は、軽量で高い引張強度と弾 性率を持つ炭素繊維シート(トウシート®、ストランドシート®)、 FRP格子筋(トウグリッド®)を貼り付けるだけの簡便な施工で、 老朽化した橋梁の耐荷力や耐震性の向上を図っています。

老朽化

チタン箔工法

日鉄防食(株)のチタン箔工法は、チタン箔シートと塗装を複合 施工し、劣化・腐食因子を遮断する工法です。塗膜劣化と鋼材腐 食を抑制し、鋼橋のライフサイクルコスト(LCC)の低減に貢献します。

老朽化

橋梁用アンボンドブレース

日鉄エンジニアリング(株)の橋梁用アンボンドブレースは、 新設橋では部材断面の小型化により鋼材の使用量が、既設橋 では補強範囲の縮小により補強材の使用量が、それぞれ減少。 従来の耐震補強工事に比べて工期短縮を図れます。

地震 緊急工事

超高力ボルトSHTB®

日鉄ボルテン(株)のSHTB®は、優れた耐遅れ破壊性を有しな がら、従来ボルトの約1.5倍という高耐力化を実現。ボルト継手 のコンパクト化やボルト締め付け費の低減、工期短縮を図るこ とができます。

床版

地震 緊急工事 老朽化

ストランドシートJCM埋設工法

日鉄ケミカル&マテリアル(株)のストランドシートJCM埋 設工法は、従来の連続繊維シートによる床版上面接着補強工法 を進化させた画期的な工法で、圧倒的な施工工期短縮が可能です。

老朽化

グレーティング™

日鉄エンジニアリング(株)のグレーティング™は、高耐食性めっ き鋼板の底型枠を持つI形鋼格子床版です。工期短縮・安全施工、 死荷重軽減(床版厚が薄く軽量のため上下部工への影響が少ない)、 パネル上に重機が上載可能、分割施工が可能になります。

道路橋を保全する

日本製鉄グループの 老朽化対策 ソリューション

道路橋の老朽化が進んでいます。日本製鉄グループは最先端 の素材提供や工法提案を通じて、国土強靱化の観点から橋梁 の更新、点検・補修ニーズに応えています。橋梁老朽化 対策に資する鋼材や鋼構造の特徴がよくわかるパンフレット 「日本製鉄グループの『国土強靱化』ソリューション 橋梁老朽化 対策」の掲載商品群の一部を紹介します。

NIPPON STEEL

日本製鉄グループの 『国土強靱化』ソリューション

パンフレット 「日本製鉄グループの 『国土強靱化』 ソリューション 橋梁老朽化対策」

老朽化

塗装周期延長鋼 CORSPACE®

老朽化

橋梁用高降伏点鋼板SBHS

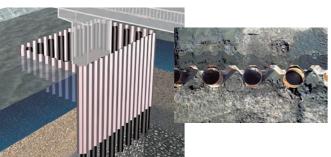
日本製鉄(株)のCORSPACE®は、塗装の塗替周期延長を可能にす る新たな耐食鋼で、ライフサイクルコスト(LCC)縮減を実現。塩害 の厳しい環境、融雪剤散布を行う積雪地帯、将来的な塗装塗替え足 場の設置困難となるような道路・鉄道跨線橋などに採用されています。

日本製鉄(株)のSBHSは、産学連携プロジェクトにより開発 された橋梁用高降伏点鋼板で、高強度でありながら従来鋼より も加工性・溶接性に優れています。東京ゲートブリッジでは総 重量約3%、総工費約12%削減(国土交通省試算)を実現しました。

老朽化

NSカバープレート®

日鉄エンジニアリング(株)のNSカバープレート®は高耐 久の外装材です。常設の足場機能に加え、橋梁の防食、遮音、 剥落防止など多くの機能があります。軽量のため、新設橋だけ でなく既設橋への適用も容易で予防保全・長寿命化策の切り札 です。


21 季刊 ニッポンスチール Vol.13 季刊ニッポンスチール Vol.13 20

他架設物

老朽化

コンビジャイロ工法®

日本製鉄(株)のコンビジャイロ工法®は、剛性の高い鋼管杭 と止水性に優れたハット形鋼矢板900を組み合わせた、合理 的で経済性に優れた壁体構造を提供する工法です。狭隘地や仮 締切りなどの施工に優れています。

老朽化

省合金二相ステンレス鋼

二相ステンレス鋼は、オーステナ イトとフェライトの二相混合ステン レス鋼で高強度、高耐食、価格安定 性を特徴としています。日鉄ステン レス(株)の独自二相ステンレス鋼で あるNSSC2120®は、汎用オーステ ナイト系ステンレス鋼のSUS304に 比べ強度が高く、耐食性に優れており、

仮締切り施工例

人道橋や道路施設の金物などのライフサイクルコスト削減やメン テナンスフリー化を実現できます。

老朽化

高耐食めっき鋼板 ZEXEED®(ゼクシード)

東海道新幹線/浜名橋梁下部工検査路(ZAM®製)

日本製鉄(株)の高耐食めっき鋼板シリーズZAM®、スーパー ダイマ®は、同じめっき付着量で後めっきの5倍*の耐食性能 を持ち、交通インフラ設備に広く採用されています。このたび 日本製鉄が発売したZEXEED®は、ZAM®・スーパーダイマ® 以上の耐食性を持つ高耐食めっき鋼板です。ZEXEED®はさら なる交通インフラ設備の長寿命化を実現し、国土強靱化に貢献 していきます。

※中性塩水噴霧サイクル試験方法 (JIS H 8502) / 腐食減量(g/㎡)より

緊急工事

即結管べえ®

日本製鉄(株)の即結管べえ® は、仮設桟橋・構台用の機械 式継手です。従来のH鋼桟橋 工法に比べて、高所作業低減 による安全性の向上や短工期 化を実現した省力化工法です。

診断技術

老朽化

鋼橋・コンクリート橋の劣化診断



日鉄テクノロジー(株)は橋梁の維持管理のため、亀裂の状況 や鉄筋の腐食、塗膜の劣化、腐食による肉厚減少、残留応力の 測定など、鋼橋・コンクリート橋の劣化診断を行っています。

老朽化

耐候性鋼橋梁の診断技術

日鉄防食(株)の耐候性鋼橋梁の診断技術は、さびや皮膜の 状態(正常、異常)の定量的な診断が可能で、耐候性鋼橋梁の 維持管理に貢献しています。

橋脚

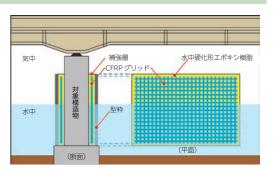
老朽化

高耐食ステンレス鋼 NSSC®270

日鉄ステンレス(株)のNSSC®270は、海水などの高塩化物 イオン濃度における優れた耐食性を特徴とするスーパーオーステ ナイト系ステンレス鋼です。海浜地区の橋脚ライニング材や屋根 壁材、海水にさらされる各種装置(海水淡水化プラントや海水熱 交換器など)に幅広く適用されています。

地震 老朽化

仮締切 LPF 工法®



日鉄建材(株)の仮締 切LPF工法®は、水中 既設橋脚の耐震補強工 事で仮締切用ライナー プレートを迅速かつ安 全に施工することがで きます。潜水士による 水中組立作業や複数の 台船上での組立作業が 不要です。

老朽化

水中グリッド補強工法

日鉄防食(株)の水中グリッド補強工法は、水中にある橋脚の 鉄筋コンクリート構造物の表面に、樹脂を含浸させた炭素繊維 の格子状繊維束(CFRPグリッド)を樹脂層により接着し、構造物 を補強します。経年劣化や耐震強度不足を安価に解決する工法 です。

基礎

地震

鋼管矢板基礎

鋼管矢板基礎は、 鋼管矢板を閉鎖形 状に組み合わせて 設置し、鋼管矢板 群が一体となって 挙動することで、 高い水平抵抗・鉛 直支持力が得られ

日本製鉄(株)の

ます。大水深・軟弱地盤でも施工が可能で、橋梁耐震補強で数 多くの実績があります。

地震

NSエコパイル®工法

施工状況(全周回転式杭打機) 提供: 鉄道·運輸機構 最適です。

イル®工法は、先端にら旋 状の羽根を取り付けた鋼管 を回転圧入する工法です。 先端支持力が大きいため、 軟弱地盤に適します。また 狭隘な現場での施工が可能 で、無排土施工の実現によ り土砂搬出ダンプが走行し ないため、周辺環境対策に

23 季刊 ニッポンスチール Vol.13