プのSDGs 学するシーラボ

海の豊かさを

日本製鉄は豊かな海の生態系を取り戻すため、藻場の再生を促進する [海の森づくり]に取り組んでいます。北海道増毛町など実海域で鉄鋼 スラグを利用した施肥効果を実証するとともに、千葉県富津市の 技術開発本部に開設した「シーラボ」(海域環境シミュレーション 設備)で海の環境と生物多様性の保全への貢献を解明しています。 今号はSDGs 持続可能な開発目標 14 「海の豊かさを守ろう」をテーマに、 ラボでの研究・分析技術を活かした東京湾富津沖のノリ養殖不作 解明調査と、ブルーカーボン(海洋生態系によるCO2の吸収・固定)の 基礎研究について紹介します。

海の森づくりを日本全国3カ所以上で展開しています。 海中に不足している鉄イオンを腐植酸鉄として長期間持 栄養分の不足もその一因とされています。 る磯焼けが発生しています。 磯焼けは鉄をはじめとする 続的に海藻まで届けることを可能とするビバリー®ユニッ コンブやワカメなどの海藻類が失われ、不毛の状態とな 「植土の混合物をヤシの繊維で編んだ袋に入れることで を開発。磯焼け海域に設置して藻場の再生を促進する 2002年から海の森づくりに取り組む北海道増毛町 日本製鉄は、鉄づくりにおける副産物の鉄鋼スラグと 沖合に向かってコンブなどの海藻類が豊かに再生し こうした実海域における

地域貢献 富津沖の水質調査分析で

解明に向けた調査を実施しました。 湾漁業研究所と連携し、不作原因の は千葉県水産総合研究センター東京 要請を受け、日本製鉄技術開発本部 たなか、新富津漁業協同組合からの 不作に悩まされていました。こうし し近年、富津沖のノリ養殖が深刻な 有数のノリの名産地なのです。しか されています。東京湾富津沖は全国 約6割が新富津漁業協同組合で生産 用するという千葉県産ノリのうち、 江戸前のお寿司屋さんが好んで使

見学させていただき、 種付けの様子から収穫までの過程を 「シーラボIを立ち上げた2009 地元漁協の方々にノリ養殖の現場 網の管理方法

> になりました」(小杉知佳課長 きの恩返しをしたいという意味もあり、 いう経緯がありましたので、そのと を実施することができました。そう シーラボIでのノリ網を使った実験 など丁寧に教えていただいたおかげで、 ノリ不作の原因調査に協力すること

富津沖ではノリの葉状体が短くち

を行いました。海中に窒素やリンな 南側に広がる養殖場の5地点で採水 漁期の10~4月の週1回、富津岬の 晩春にかけて行われます。そのため 質調査に携わりました。 不明でした。そこで、日本製鉄は水 のか、それとも水質の影響なのかは ていました。原因は魚による食害な ぎれる短縮化によって、不作が続い ノリ養殖は海水温の低い初秋から

どの栄養素が不足すると、 生育が低 技術開発本部 小杉 知佳 課長

いると考えられました。

富津沖のノリ養殖の様子

先端技術研究所 環境基盤研究部 吉村 航 主任研究員

技術開発本部

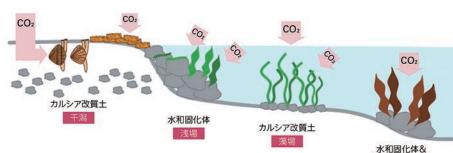
日本製鉄(株)

研究員)

場の減少がクロダイの食害を誘発す 要があるかもしれません。自然環境 る一因となっている可能性もあります どの環境の変化に加え、天然のエサ ています。温暖化による高水温化な プランクトンや海藻の量が減ってき が、一方で栄養塩濃度が下がり植物 いくことは非常に良いことなのです した。東京湾がきれいな海になって 合との協力関係を築くこともできま 殖に役立つ情報を提供でき、地元組

を大きく低下させます。栄養素や水 下するだけでなく、ノリの色が著し 温、塩分濃度といった水質の情報は、 く薄くなる色落ちが起き、商品価値 ノリ養殖にとって極めて重要なのです 2018~20年度の3年間にわた

認されました。こうした調査結果を 傾向にあることがわかりました。ノ リン濃度の低下が漁期後半に顕著な り富津沖の水質を調査したところ、 害が、近年の被害拡大につながって 考え合わせると、クロダイによる食 のクロダイが補食することによって 東京湾漁業研究所の調査では、多数 与えている可能性がありました。一方、 リの色落ち、ひいては不作に影響を ノリが短時間で短縮化する様子が確


きたいと考えています」(吉村航主任 保全と経済活動を両立する豊かな づくりに、これからも貢献してい の管理のあり方を見直していく必 「毎週水質分析を速報したことで養

基礎研究を加速 ブルーカーボンの

ボⅡの大型水槽設備や実海域で基礎 どのくらいCO゚を吸収・固定化す 域の環境改善を図ることで、 組んでいます。鉄鋼スラグを活用 球温暖化対策として脚光を浴びて データを集積しています。 ることができるのか(図)を、シーラ て浅場や干潟などを造成し、 るブルーカーボンの基礎研究に取 日本製鉄は2017年度から、 藻場が 沿岸海

築を目指します。 という新たなサプライチェーンの構 で利用する「バイオマスの地産地消 術を活かしてカーボンニュートラル ラグを利用した藻場造成で培った技 期間は2021~22年度で、鉄鋼ス 材であるマリンバイオマス(海藻)を る技術開発」が採択されました。事業 バイオマスの多角的製鉄利用に資す 築に係る技術開発に応募し、「マリン 追及を目指したサプライチェーン構 カーボン(海洋生態系による炭素貯留) ンターと共同で、NEDOのブルー (株)、(一財)金属系材料研究開発セ さらに日鉄ケミカル&マテリアル それを製鉄プロセスのなか

現に向けた研究開発を加速させてい 2050年カーボンニュートラル実 ルーカーボンに関する知見を蓄積し、 シーラボを研究拠点として、

