
「つなげる力」を先進化して 「つくる力」を強化する

日本製鉄は最新のデジタル技術を積極的に評価・導入することで、精度の高いデータに基づく プロセス制御・自動化によって「つなげる力」を先進化し、「つくる力」を強化しています。日本製鉄 グループの製造現場への展開を視野に入れて積み上げられている製鉄所のDX知見を紹介します。

DX最前線

無線力メ

ら大型船で運ばれてきます。製鉄所の原

オーストラリアやブラジルなどの海外か

たものの、

画像フィルタリング手法の強

落鉱堆積状況の検知が難しいケースがあっ

鉄鋼製品の原料となる鉄鉱石や石炭は

原料ヤードの遠隔監視で生産ロスを防ぐ

長距離通信技術LPWAを活用する

ます。 後に故障することなく、順調に稼働して バッテリーの併用による完全自己給電型 います。また逆光や影などの影響により の設置工事が困難なため、太陽光発電と の汚れや損傷が懸念されたものの、 システム制御技術部・深見慎太郎主査) に設計しました」(設備・保全技術センター 原料ヤードは粉じんが舞うため、 原料ヤードは電気を供給する配

ア)と呼ばれる無線通信技術を活用してい Power:省電力、Wide Area:広域エリ 遠隔監視できるように、

LPWA(Low

「ワイヤレスカメラで落鉱堆積状況を

開発しました。 状況を目視で確認して、 ぐため、 化を図るため、 しています。 コンベアの緊急停止による生産ロスを防 ベルトから落下した原料が堆積しがちです。 アの乗り継ぎ箇所や終点箇所などでは、 約80キロメートルにも及びます。 積みにします。蓄えられた原料は、 料専用バースに大型船が到着すると、ア にコンベアで運ばれて事前処理されたあと. ンベアが稼働しています。 局炉で還元され、 ンローダーと呼ばれる大型重機で荷揚げ 東日本製鉄所君津地区では数百本のコ コンベアで原料ヤードへ運んで、 作業員が定期的に巡回し、 その点検・監視業務の効率 自己給電型無線カメラを 溶けた銑鉄となります。 適宜落鉱を回収 総延長は延べ 。コンベ さら Ш

らず、

日本製鉄(株) 東日本製鉄所 製銑部 製銑技術室 小林 剛 主幹

日本製鉄(株) 設備・保全技術センター システム制御技術部 システムエンジニアリング室


深見 慎太郎 主查

率化に貢献しています。 な巡回を省力化し、 を計測できるようになり、 こうして定点観測した画像から落鉱高さ 化などで自動検知を可能にしています 点検・監視業務の効 日々の定期的

林剛主幹 たいと考えています」 (東日本製鉄所 用いただけるよう横展開にも努めていき 的に応用していき、 能性を見出すことができました。 と共有し、点検・監視業務の効率化の可 IT やIoT などのデジタル技術を積極 「今回は現場のニーズを技術開発部門 原料ヤードを持つ全社の工場で活 東日本製鉄所のみな 。今後も

A による製造設備の 稼働監視が始まる

日本製鉄はAI開発・適用可能なプラットフォーム NS-DIG®を整備し、安全操業への支援、予防保全に よる安定生産、品質向上などを推進しています。今回 その一環として日本電気(株)(NEC)のAI技術を活用 し、東日本製鉄所君津地区で設備状態のオンライン監 視における長期間運用テストを2021年1月に開始し ます。熱延工場の各所に設置した500点の物理センサー から収集したデータを含む2,000以上の計測項目デ タをもとに、設備や装置の振る舞いをAIに学習させ モデル化することで、トラブルを未然に防ぎ、設備点 検・稼働監視の効率化を図ります。

製鉄所 DX最前線

リアルな仮想空間で新人技術者を教育する

360°映像で計装機器の仕組みを理解

とコークス(石炭を蒸し焼きにしたもの も設置されています。 況を計測する計装機器が1000点以上 例えば製鉄所の主要設備である高炉に 炉体の周りの温度やガスの圧力の状 高炉では、

要なスキルを身につけていきます。 津市の技術開発本部 RE センターで基 電気技術系の新入社員は仕事環境や職種 についての理解を深めるため、 計算機)研修に参加し、技術者として必 **傡教育の強化を図るEIC(電気・計装** 共通の新入社員教育を受けたあと 千葉県富

員が数多く入ってきます。4月から3カ

日本製鉄には毎年、次代を担う新入社

考えました」(設備・保全技術センター 度計や圧力計、流量計をVRを通じて 高めるものの、限られた研修期間のなか 用いた実機動作確認や温度制御実習を行っ 覚えてもらうことを目的としています システム制御技術部・柴本浩児主査) 研修生の座学理解度をさらに高めたいと 講義室で体感できるシステムをつくり (※)です。日本製鉄で実用されている温 をいかに体験し理解してもらうかが大き では座学講義のなかで実機の動作や制御 万法、プロセス制御システムの仕組みを かわる各種電気・計装機器の原理や使用 な課題でした。そこで着目したのがVR てきました。これらは研修生の理解度を これまで計装の研修では模擬プラントを 「EIC研修は、今後の業務に深くか

> る送風羽□から1300℃の熱風を吹き 備技術者に欠かせません。 れており、各種の知識は製鉄所の計装設 圧延などの設備においても同様に設置さ 操業において計装機器は重要な役割を果 クな還元反応を安定して行うため、 底に溜まっていきます。このダイナミッ 溶けた銑鉄は豪雨のように流れ落ち、炉 その温度は最高で2000℃にも達し、 を溶かしながら酸素を奪っていきます。 気流となって炉内を吹き上がり、 スが発生します。還元ガスは激しい上昇 込むことで、コークスが燃焼して還元ガ を炉頂から交互に装入し、炉の下部にあ たしています。計装機器は転炉、連続鋳造、 鉄鉱石 高炉

場の至る所に点在しますが、VRであれ 機器の解説や関連問題を出題する講義形 撮れるまで現場に何度も足を運びました。 器を見せたいと思い、納得のいく映像が 用を検討し始めました。VRは上下左右 ができます。研修生からは『計装機器は 場に行くことができ、 ば移動時間もなく、 式としました。計装機器は日本製鉄の工 あるかを探してもらってから、 研修はグループに分かれて機器がどこに を歩く際に気づきにくい頭上や足元の機 360度見渡せる特徴があるので、現場 もとに、今年の1月ごろからVRの適 「昨年度の研修生として感じた経験を 外見の変化についても見せること かつ安全に複数の現 使用環境や機器の 講師より

> システム制御技術部・岩田理彩スタッフ) ていきたいです」(設備・保全技術センター 新人に計装機器の重要性と奥深さを伝え 手に活用し、今後一緒に製鉄所を支える 持続につなげることができたと思います。 せられ、 いることがわかりました』などの感想も寄 1つ1つ意味があってこの形状になって 来年度以降の研修でも引き続きVR をト 座学の理解度アップや集中力の

日本製鉄(株) ・保全技術センター システム制御技術部 計装エンジニアリング室

設備・保全技術センター システム制御技術部 計装エンジニアリング室

岩田 理彩 スタッフ

日本製鉄(株)

柴本 浩児 主査

東日本製鉄所君津地区第4高炉 高炉には1000点以上のセンサーが設置されています。

製鉄所 DX最前線 5 G 全失

スマート製鉄所化を加速する

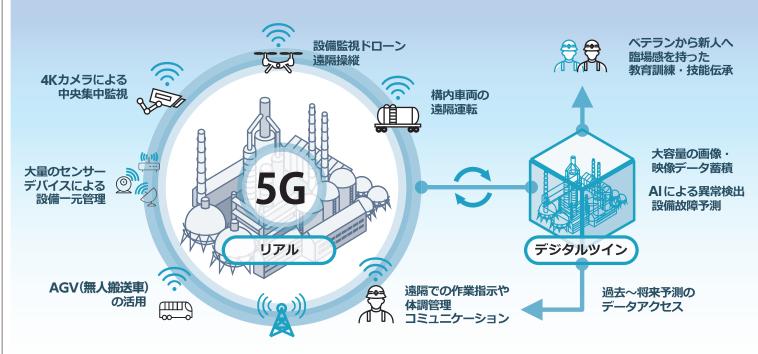
自営無線網の適用検証を開始

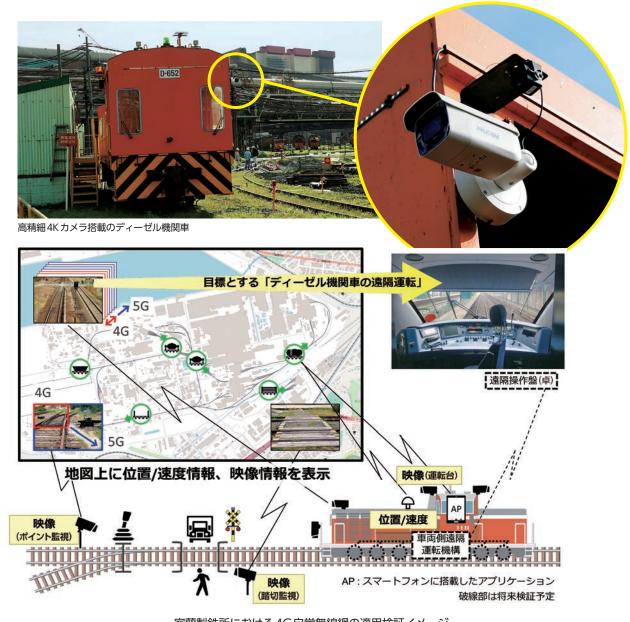
でせています。 ロメ実現の重要な技術の1つといえる ロメ実現の重要な技術の1つといえる のが、高速・大容量、低遅延、多数端末 のが、高速・大容量、低遅延、多数端末

考えています」(室蘭製鉄所・桐石俊幸地ツイン化、スマートファクトリー化を関いて、製造現場のDXを間違いなく推してくれる技術だと確信しています。そして室蘭で得られた知見が、日本製鉄の他製鉄所やグループ各社の製造制にも展開され、競争力のさらなる向上につながるように頑張っていきをとしたつながるように頑張っていきをとした。

しい場所であることも理由です。 けやすいと考えられるので自然環境の厳高周波帯を使う5Gは雪や雨の影響を受

運搬の実現も見据えています。 の作業の効率化、さらに将来的には無人 実現性があることがあげられます。特に 機関車の遠隔操作は比較的難易度が低く 動体が良いこと、鉄路を走るディーゼル するには動画のモニタリングが最適であ 5Gの特長である大容量・低遅延を検証 今回ディーゼル機関車を対象としたのは 網における事前適用検証を行うことで、 ること、通信品質を検証するためには移 迅速な5G化を図りたいと考えています。 2020年末に予定されています。 人手不足が課題となっている輸送現場で に先駆けて、日本製鉄は4Gの自営無線 ローカル 5G 周波数帯の免許申請は それ


通信システムの歩み


日本製鉄(株) 室蘭製鉄所 生産技術部 システム室 桐石 俊幸 室長

世代	年代	変化
1G	1980年代	自動車電話やショルダーフォンなどに採用
2G	1990年代	携帯電話でメールやインターネットが使えるようになる
3G	2000年代初め	モバイルネットワークやスマートフォンの登場
4G	2012年	スマートフォンを一気に高機能化させる
5G	2020年	超高速・大容量化でIoT時代のコミュニケーションツールへ

「G」という記号はGeneration(世代)の頭文字で、無線データ通信網の技術革新を表したものと言えます。現在さらに世界中の研究機関が6Gの2030年商用化に向けた研究開発に挑んでいます。通信領域は海や空、宇宙にまで広がり、遠隔地にいる人を3D映像として別の場所に移動させることもできるようになります。技術革新がより豊かな暮らしや社会を実現していきます。

ローカル5Gを活用した製鉄所像

室蘭製鉄所における4G自営無線網の適用検証イメージ

LoRaWAN

高炉でドロドロに溶かされた銑鉄は

物流のさらなる効率化に挑む

LoRaWAN™を用いた通信基盤と IoT機器を組み合わせたシステムの構築で、 鋼片台車を見える化する

という広域な範囲を持つ和歌山地区を する特徴があり、甲子園球場123個分 4Gや5Gなどのセルラー通信に比べて リア)と呼ばれる無線通信規格の1つで 比べて数キロに及ぶ長距離通信を可能に 消費電力や運用コストが低く、W - Fiと Power:省電力、Wide Area:広域エ oRaWAN≅とは、LPWA(Low

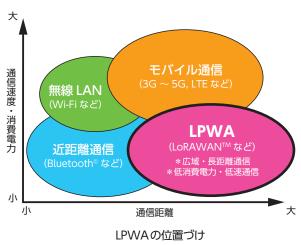
ばれます。一部の鋼管製品については 別にそれぞれ加工するため次の工場に運 ラブやブルーム、ビレットは、 まれます。工場でつくられた半製品のス 製鋼工場に送られ、 ため、ディーゼル機関車を使い鋼片工場 ブルームを圧延加工してビレットにする に運ばれていきます。 強靱な鋼につくり込 最終製品

築による鋼片ビレット台車の見える化に 製鉄所・原田吉規スタッフ) 量の通信は不要であるため、その面でも 取り組みました。また今回の場合、 みが構築できれば稼働率が高まると考え、 車に取り付けて位置情報を把握する仕組 まで搬送量が増えてくると、空き台車の の搬送台車に載せて運んでいます。 3000トンにのぼるビレットを LoRaWAN≧を用いた通信基盤の構 ていました。そこで、GPS機器を台 位置がわからずフル活用できなかったた oRaWAN∉を採用しました」(関西 |関西製鉄所和歌山地区では1 稼働率や運用効率などの課題を抱え 30台 \Box

できました(図1)。 になり、 難でしたが、今ではパソコンやスマート 車の位置や稼働状況を把握することは困 フォンから誰もが情報を共有できるよう 物流事務所以外の職場で鋼片ビレット台 カバーすることができました。これまで 波が届きにくい場所があったのです。 め、さまざまな工場建屋があるため、 には高さ100メートルの高炉をはじ 信基地局を設置することで、所内全域を こで電波状態を詳細に調べ、数カ所の通 置には1つ課題がありました。製鉄所内 稼働率を30%向上させることが

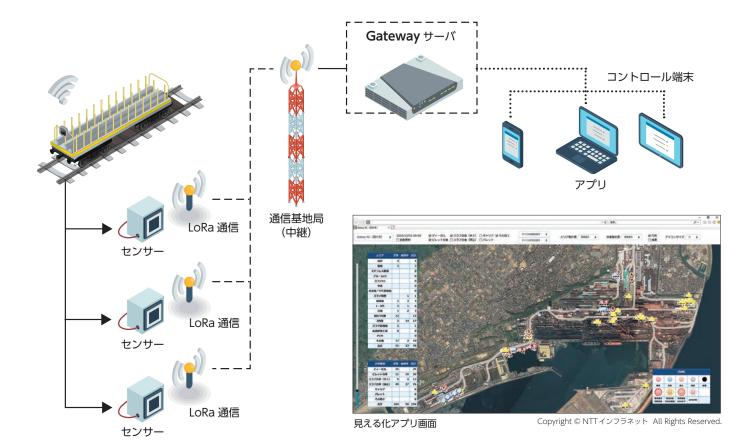
現場への適用をさらに進めていきます 所では非常に有効な技術であり、 その特性から広大な敷地を有する製鉄 用も進んでいます。LoRaWAN™は、 ゼル機関車を合わせ約500台への適 ぶトーピードカーやこれらを運ぶディー ルーム台車、高炉から溶けた銑鉄を運 道レールが敷設されている和歌山地区 (デジタル改革推進部・小嵐慶一上席主幹) 「全長100キロメートルにも及ぶ鉄 鋼片台車のほかにもスラブ・ブ

通信基地局(ゲートウェイ)を設置でき 少ない基地局でカバーすることができま ることができます。 機密性の高い収集データを安全に活用 製鉄所内に制限した通信基盤環境のもと 線局免許が不要な通信規格のため自社で す。通信セキュリティ面においても、


一方、LoRaWAN≦の基地局の設

日本製鉄(株) デジタル改革推進部 小嵐 慶一 上席主幹

日本製鉄(株) 関西製鉄所 生産技術部 システム室 原田 吉規 スタッフ



スラブ台車 トーピードカー ディーゼル機関車

図1 鋼片ビレット台車の見える化システム構成

台車に取り付けたIoT機器のGPS位置情報を通信基地局で受信し、線路地図上に台車の位置表示と 稼働情報を表したアプリケーションを構築することで、台車のリアルタイム管理が可能になりました。

薄板

緩衝材の配置や欠落の状態をAIに学習させる

タグによる無線読み取り、画像処理の3 た」 (名古屋製鉄所・園田貴之主査) 緩衝材のずれや欠落を検知する仕組み 最初にレーザースキャンやID

ルは工場から倉庫に運び込まれ、クレー 20トンにもなります。完成した薄板コイ 薄く押し延ばし、コイル状に巻き取って の圧延機で0・15~3・20ミリ程度まで 薄板は、厚さ250ミリの鋼片を複数 鋼製家具、 の場に向かうべく出荷を待ちます。 150センチメートルほど、重量は5~ ンで段積みに自動搬送されて、次の活躍 います。薄板コイル1梱包の直径は60~ 自動車、 飲料缶や缶詰などに使われる 洗濯機、冷蔵庫(電化製品)

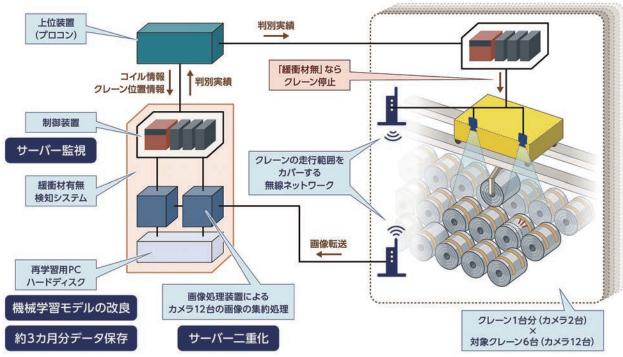
が、死角で見えづらいときもありました。 のキズや凹みを確認・検査してきました させ、目視で緩衝材の欠落によるコイル ズや凹みができるため、薄板コイルの間 ます。これまで、作業者を定期的に巡回 れたり欠落したりするケースが稀にあり クレーンで段積みにする際、緩衝材がず 知する仕組みをつくれないかと考えまし ル同士の接触前に緩衝材の欠落を自動検 定量的な把握も困難であったため、コイ に樹脂の緩衝材を挟んでいます。しかし 「薄板コイル同士が直接接触するとキ

つの方式を検討しました。 レーザースキャ

ものではありませんでした。 認するケースもあり精度の面で納得いく すが、段積みしているほかのチップを誤 め込んで読み取り機で判別する仕組みで り方式は、梱包ベルトにIDタグを埋 厚みが妨げとなって正確な判別が困難で る仕組みですが、梱包のシワやバンドの した。また、IDタグによる無線読み取 ン方式は緩衝材の厚みを検知して判別す

ることなど、さまざまなケースに対応し 欠落状態の特徴を何パターンにもわたり が、A-でした。 ディープラーニング(深 があること、緩衝材の種類も多岐にわた えられたのが画像処理方式でした。しか Aーに学習させました。 層学習)技術を使って、緩衝材の配置や なければなりません。そこで着目したの なること、コイルの大きさに複数の種類 し、場所によって照明の明るさや色が異 そのなかで最も検出精度が高いと考

基盤を構築しました。


ることから、カメラの画角を都度調整す て薄板コイルの段積み高さや寸法が異な ことがわかりました。さらに、時によっ クレーンにカメラ1台を設置して検証を て対象外の薄板コイルなど不要な情報が 行いました。 しかし、カメラの画角によっ まずはAーに画像認識させるため、 学習の精度を上げることが難しい

した。

ション上においては、緩衝材有無の識別 率はほぼ100%を実現する画像認識の をAIに学ばせた結果、事前シミュレー の画像を用意しました。それらのデータ 倍に増やすことによって、1万種類以上 けでなく、デジタル加工でデータを数十 そこで、撮影した画像から学習させるだ の状態を網羅することも不可能でした。 かったことに加え、緩衝材の欠落状態を 示す画像は極めて多岐にわたり、すべて だけでは効率的に学習精度を向上できな ることが難しく、画像を単純に入力する

しています。 判定の妨げとなる未学習の状態がありま ずつカメラを設置し、撮影した画像を無 は0・02%に抑えることに成功しま 増えると、ラインを止める回数が増えて、 緩衝材欠落状態の検出率は現在80%に達 する緩衝材有無検知システム (図) が完成 線で1台のサーバーに送って集約処理を 搬する6カ所のクレーンにそれぞれ2台 生産性が落ちてしまいますが、 いるのに欠落と判定してしまう過検出が したが、学習モデルを改良することで、 しました。システム稼働以降も、正確な こうした実証を経て、薄板コイルを運 一方、緩衝材が配置されて 過検出率

緩衝材有無検知システム

NEC のRAPID機械学習を採用し、AIに緩衝材の配置や欠落の状態を学ばせ、 薄板コイル同士が接触する前に緩衝材の欠落を自動検知する仕組みを開発しました。

日本製鉄(株) 名古屋製鉄所設備部制御技術室 **園田貴之**主査

使して生産現場の課題解決を進めていき 日々蓄積していくデータや新たなアイデ 環境をつくることが重要です。 の特性を理解するとともに、 私たち運用サイドがディープラーニング 容易に学習モデルをレベルアップできる を学習すると逆効果になってしまいます。 増えるほど精度が向上する点にあります。 短期間で実現できました。 たいと考えています」(園田主査) アによって検出率のさらなる向上を目指 ーングのメリットは、 一画像認識の仕組みの開発に1年弱か 間違ったデータや不要なデータ これからも最先端技術を駆 実装自体は10カ月という データが増えれば ディープラー 継続的かつ 一
多
後
も
、