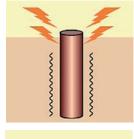
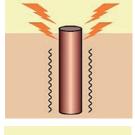


施工における従来の杭工法との比較


NSエコパイル工法

先端にらせん状の羽根を溶接した鋼管杭です。杭を回転 させることで地盤を掘削し施工します。低騒音、低振動、 無排土などのメリットを備え、高支持力、高耐震性、低 コスト、短工期をも実現する、まさに次世代の杭工法です。

従来の杭工法


打撃杭: 騒音・振動

泥水・残土、 スライム (掘り くず)や側壁崩壊

埋め込み杭: 泥水・残土、 地盤の弛みによ る先端支持力の

打撃杭は騒音・振動問題を、コンクリート杭は 残土処理(産業廃棄物)や耐震性などの問題を抱 え、都市の環境にマッチした新しい杭工法が求 められていました。

場所打ち杭: の可能性

建築物のLCAを通して寄与

層は軟弱地盤であることが多く、 基礎杭によって構造物を支える るとき、強固な地盤に到達する 建築物や高速道路などを建設す の平野部に発達している。沖積 て運ばれた土砂などが河口や河岸 要都市のほとんどは、河川によっ に堆積して形成された沖積層(※1) 東京をはじめとする日本の主

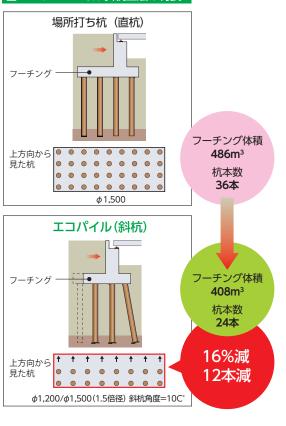
沖積層

らのリスクを低減する環境にやさしい杭工法だ。 あける掘削孔のあとに杭を打ち込み、杭が硬い地盤 が課題となっていた(**図1**)。NSエコパイルはこれ セメントミルクによる土壌への水質汚染の懸念、 業廃棄物)の発生、 密着させ造成している。 そのため大量の建設排土(産 クリートを充てんすることで、先端部を支持地盤と まで到達したら、杭孔の底にセメントミルクやコン 滞とCO~排出量の増加など、環境に対するリスク 設残土やセメントを運搬する工事車両による交通渋 NSエコパイルは先端にらせん状の羽根を設け 般的なコンクリート杭の施工法は、地面に穴を 杭打ちの際に発生する騒音や振動

日本製鉄(株) 土木建材技術室 柳 悦孝 上席主幹

ことで、地盤へのスムーズな貫入が可能となり、

で地盤を上方に押し上げ、その反力を推進力とする


に鋼管を回転圧入する工法です。

羽根のくさび効果

音や振動を抑えられます。また地盤を掘削すること

洪積層

図2 NSエコパイル斜杭工法の特長

まで、 逆回転させれば引き抜くことができます。排土もな 問題となっていますが、NSエコパイルは木ネジの 建てられた大量の建築物の更新・建て替えが進むな た耐震性を発揮します。さらに高度経済成長期に 持力が得られ、大きな横揺れの地震に対しても優れ 盤の締め固め効果と羽根の拡底効果で大きな鉛直支 ています」 (土木建材技術室・柳悦孝上席主幹) ように回転させながら地中へと圧入させているため コストと環境にやさしい杭工法であると自負し 建設時だけでなく、 穴を掘って引き抜くほどの環境影響はありませ 地中にあり姿が見えない既存杭の撤去が大きな 建築物のライフサイクル全体(LCA)を通し 解体・リサイクル時に至る

基礎杭として採用されている。 周辺地盤の変位や湧水への影響が他の杭工法よりも 豊富に湧出する地方都市では、 まな建造物を支えて踏ん張っている。また伏流水が が地下70メートルの硬い地盤に羽根を広げ、さまざ 軟弱地盤が厚く広がっているなか、 豊洲市場周辺では、 大幅に低いことが評価され、 東京の新たな台所として2018年に開場した 地震の際に液状化の恐れのある 集合住宅や工業団地の 基礎杭の施工に伴う NSエコパイル

鉄道や道路の土木分野でも活躍

エコパイルは施工手順が単純化されているため重機 コンクリート杭の場合、セメントを攪拌してつくる 生する工事車両の通行も規制される。さらに一般の 例えば鉄道のホームおよび線路周辺の工事では、 プラント施設も近接地に必要となる。 道路の高架橋など土木分野でも広く採用されている。 1時間は最終電車のあと始発までの 4 時間程度しか さらに斜杭によるコスト縮減が可能なことが大き NSエコパイルは建築分野だけでなく、鉄道や 時間が制約されているうえ、騒音や振動が発 融通の利く杭工法と評価されている。 狭隘な現場で低騒音・低振動の短工期が しかしNS 施

> る(**図2**)。 張りが利くようになり、より大きな支持力を得られ の橋脚に対して4~10本という複数のNSエコパ よりもフーチング体積と杭本数の低減を実現してい る。そのためNSエコパイルの斜杭工法は、 杭を圧入することで、 を支えている。 が設置されている。 にフーチング(※~)という巨大なコンクリー. 板厚を大きくすることが求められる。 かり設置することと、杭の横方向の力に対して径や な特長だ。高架橋は橋脚が支えているが、 イルが配置され、 荷重が大きい場合、フーチングをしっ 車や電車が通るときの大きな荷重 その下に基礎杭が打たれ、 まっすぐ圧入した杭より踏ん しかし斜めに その足元 トの躯体 従来 1

では急速な経済発展に伴って交通量が増えており、 展開も始まっています。アジアやアフリカの新興国 評価されたことが大きく、北陸新幹線で大量に採用 います。 橋や高架道路を構築し交通量をカバーしようとして 例えば交通渋滞が大きな社会問題となっていたベト で国内外の都市基盤整備ニーズに応えていきたいと 狭隘地でも施工できるNSエコパイルが採用されま ナムのハノイでは、既存道路を活かしながら、 していただきました。さらにNSエコパイルは海外 公共事業として鉄道建設・運輸施設整備支援機構! 力や工期も減り、 「斜杭工法は施工のミニマム化によって、 これからもNSエコパイルなど当社の技術力 そこで既存道路を通行止めにすることなく 地球温暖化防止にも寄与します。 跨道

日本製鉄(株) 土木建材室 赤尾 賢明 上席主幹

考えています」(土木建材室・赤尾賢明上席主幹)