ア内測定の新たな可能性を く言語版ミュ デン

製鉄プロセスの第一歩を支える EPC 製鉄研究開発部

新日鉄の技術開発本部では、リサーチ・アンド・エンジ ニアリング(RE)の理念のもと、基礎基盤研究から応用開発、 実機化エンジニアリングまでの一貫体制を確立している。 そのうち、環境・プロセス研究開発センター (EPC) では、 環境・エネルギー・資源リサイクル分野への対応、製銑・ 製鋼・圧延の製鉄プロセスの新技術開発と、設備の実機化 エンジニアリングを行うとともに、それらを支える多種多 様な技術開発を行っている。

このうち、鉄をつくるプロセスの第一歩、海外から調達 した鉄鉱石 (Fe₂O₃主体)と石炭 (還元材) から一定の品質の 溶銑を製造する過程である「製銑」に関する技術開発では、 生産設備である高炉の操業改善(増生産、還元材比低減な ど)、それを支える原料の品質改善(つくり込み)、資源の 利用拡大、リサイクル技術や新鉄源プロセスの提案など、 シーズ発掘から実用化に至る道筋を提供している。

新日鉄では、世界に先駆けて高炉の大型化や劣質原料 の多量使用、省エネルギーを推進。その一つの例として、

次世代コークス製造技術 SCOPE21型低NOx炉が今 年5月から大分製鉄所で本 格稼働している。また、資 源リサイクル技術として、 社外で発生した廃プラス チックの再資源化を進めて いる。製銑研究開発部長の 内藤誠章は次のように語る。

EPC 製銑研究開発部長 内藤 誠章 (1982年入社 冶金工学専攻)

技術開発本部組織図

技術開発本部

- • 技術開発企画部
- • 鉄鋼研究所
- · 先端技術研究所
- 環境・プロセス研究開発センター(EPC)
- 技術研究部

- エネルギー・プロセス研究開発部
- 製銑研究開発部
- 製鋼研究開発部
- 圧延研究開発部
- ·無機材料研究開発部
- 計測·制御研究開発部
- プラントエンジニアリング部
- 機械技術部
- ・システム制御技術部
- 十木建築技術部

「足下の大きな課題である原燃料高騰への対応やCO₂排 出の一層の削減のため、CO2の30%削減を目指して、当社 が主体となって提案した高反応性炭材使用技術 (還元平衡 点制御技術)、炭素から水素系への高炉還元材の転換(水 素製鉄) などが国家プロジェクトとして取り上げられ現在 推進中です。私たちは、目の前の緊急課題についても当然 対処しますが、一方、夢とロマンを持ち続けながら研究開 発を進めたいと思っています。ここでご紹介するミュオン を活用した高炉内部計測技術はそれに相当します。また、 CO。削減技術など、大学とも連携して世界に誇れる技術を 少しでも多く日本から発信していきたいと考えています」

見えない高炉内部を経験値と 外部からの測定で推測

高炉とは、鉄鉱石に含まれる酸素を1.500℃という高温で 除去(還元)して鉄を取り出す装置だ。高さは約40m、直径 10数mの炉底面積を持つ巨大な徳利型の高圧炉で、一基当 たり1日に自動車1万台分に相当する約1万トンの銑鉄を つくり出す(写真1)。

高炉では、その最上部から鉄鉱石と還元材のコークスを 交互に層を成すように装入し、炉内を下降させる。そして 炉下部の送風羽口から熱風と微粉炭が吹き込まれ、この 熱風でコークスと微粉炭がガス化して炉内を吹き昇り、鉄 鉱石(酸化鉄)を昇温させながら酸素を奪っていく(間接還 元)。酸化鉄の一部はコークスの炭素と直接反応してさら に還元され(直接還元)、溶銑となって炉底に溜まり、出銑 口から銑鉄として取り出される(図1)。

高炉はその性質上、一度操業を開始すると超高温での24 時間連続操業という過酷な環境下で稼働を続けなければな

写真 1

大分第2高炉

地球には絶えず宇宙線 (※1) が降り注ぎ、私たち人間の身体も含め、地球上の構造物を膨大な数の宇宙線が通過し ていく。新日鉄ではその宇宙線の一つであるミュオンを利用して、超高温下の操業で内部を見ることのできない高 炉の状態を測定しようと、長年ミュオンの研究に携わってきた専門家とともに、産学連携による共同研究を進め ている。本特集では、新日鉄の環境・プロセス研究開発センター(以下、EPC)製銑研究開発部で行われている、 宇宙線ミュオンによる高炉の炉内観察技術開発について紹介する。

らない。その高炉内部を支えるため、高炉の炉壁・炉底は、 内側に水冷パイプを内蔵した耐火レンガで築かれており、 特に炉下部の溶銑が溜まる部分の側壁は厚さ約2mのカー ボンブロック (耐火レンガ)、側面にはアルミナなどの酸化 物系の耐火物を貼ってできている(図2、写真2)。超高温環 境下で高炉の炉壁・炉底は徐々に損耗するため、その耐久 性は1990年代に火入れした高炉では約15年、2000年代に 火入れした高炉では長寿命化技術の進歩により20年以上を 目標としている。現在、新日鉄では約15年ごとに耐火レン ガを貼り替える改修工事(巻き替え)を実施している。EPC 製銑研究開発部主任研究員の篠竹昭彦は次のように語る。

「レンガは操業中に損耗しますが、均一に減るわけでは なく、炉底部を溶銑やスラグが通過することによって、局 所的に損耗していきます。この炉底側壁部分の一番薄い箇 所が約50cmになると危険だと判断しており、その前に高 炉改修を行う計画を立てています。そのため、レンガの外 側から5~15cmの位置に熱電対という温度計を入れ、現場 のベテラン作業者とエンジニアが、測温結果によってレン

ガの厚みを推定しています(図3)。過去の統計によれば出 銑比(炉内容積あたりの生産速度)が高い高炉ほど寿命が短 いという知見があります」

新日鉄では、この熱電対の測温結果はもちろん、圧力、 ガスの分布状況を1秒単位で計測し、3次元画面に再現す る「3D-VENUS」を開発し、操業の安定化と改修時期の推 定に役立てている(2008年本誌3月号参照)。

「しかし、高炉改修時に高炉内部を検証すると、昔は推定

値と実績の壁厚が比較的合っ ていましたが、最近はカーボ ンブロックの品質向上などに より、まだ壁厚に余裕が残っ ていることも増えています。 耐火レンガの交換には数百億 円かかり、適切な時期まで交 換を延期できれば年間十数億 円以上の削減効果が見込めま す | (篠竹)。

EPC 製銑研究開発部主任研究員 篠竹 昭彦 (1985年入社 反応化学専攻)

図 1 高炉側面図

図2 高炉断面図

炉床から見上げた高炉内部

図3 温度測定によるレンガの損耗推定

宇宙線:宇宙から地球に絶えず高速で降り注いでいる原子核や素粒子。地球大気に飛び込む前の宇宙線を「一次宇宙線」、大気に飛び込んで変化し新たに生まれた宇宙線を 二次宇宙線」と呼ぶ。ミュオンは二次宇宙線。

産学連携で始まったミュオンによる 高炉内部観察技術の開発

宇宙線ミュオンとは素粒子の一つで、1937年に発見され た。一次宇宙線 (陽子・電子) が大気圏に届く際、π中間子 とk中間子ができ、すぐに崩壊してミュオン、ガンマ線、 ニュートリノなどの素粒子となり地球上に降り注ぐ。ミュ オンは陽子より軽くて電子より重く、電荷を持っているた め、検知しやすい。寿命は2.2 µs(※2)であるが、光速に近 い速度で移動する物体は時間の進みが遅くなるという相対 性理論の効果によって地表まで届く(図4)。また、水、炭素、 鉄いずれの物体も陽子や電子では数10cm程度しか透過し ないが、ミュオンはさらに大きな物体も透過する強い透過 力を持つ。密度の高い物質を透過する際にはミュオンの透 過量が落ちるが、逆にミュオンの透過量と減衰度合いを測 ることにより、物質内部の構造を計測することができる。

新日鉄では、2004年から高エネルギー加速器研究機構 (KEK)と共同研究を行い、当時KEK教授としてミュオ ン研究を進めていた永嶺謙忠氏(東京大学名誉教授)、田中 宏幸氏 (現 東京大学地震研究所特任助教) らと、大分製鉄 所第2高炉の吹き止め後に取り出した炉底マンテルを対象 に、ミュオンを利用した炉壁と炉内部の計測実験を行った。

実験には、特に透過性が良く実験条件設定が比較的容易 な水平方向から飛来するミュオンを利用した。1m×1m のプラスチックシンチレータ(※3)4枚を10cm角の升目に区 切った検出器を2台、高炉の炉底部脇に並べて設置して、 高炉を透過するミュオンの数を検出し、ミュオンの透過度 合いから密度長 (平均密度×通過距離) を算出した (図5)。 水平方向のミュオンは飛来頻度が低いため、一定期間(約1 カ月)継続的に計測し、分布を求めた。

その測定結果は、実際に炉底マンテル内に残った銑鉄とレ ンガの密度とほぼ一致し、また銑鉄とレンガの位置について も両者の密度差から明確に判別できることが分かった(図6)。

宇宙線ミュオンの可能性

次に2004年に、改修を終えて稼働再開から間もない大 分製鉄所の第2高炉において、ミュオンを用いて高炉内部 の状態を"視る"ことができるか実験する目的で、炉内の物 質密度と炉底レンガ損耗量の計測を実施した。

第2高炉は稼働直後でレンガの損耗度合いはまだ小さい と考えられた。一つの課題は、溶銑の溜まっている高炉炉 底部の密度がはっきり分からない点だった。高炉の炉底部 は溶銑のプールになっているが、炉上部に詰まっている鉄 鉱石やコークスの荷重によって炉下部のコークス(「炉芯」) が溶銑のプール内に押し込まれる。一方、溶銑は密度が大 きいため $(約7 \times 10^3 \text{ kg/m}^3)$ 、大きな浮力が働く。高炉によ り、または操業状態によって荷重と浮力のバランスが変わる ので、炉底部の溶銑とコークスの比率は一定ではない(図7)。

「溶銑とコークスの比率を変えて、密度が変化するとミュ オンの減衰量がどのくらいになるか、田中先生によってモ ンテカルロシミュレーション(※4)という理論計算が行われ ました。例えば密度が大きいと多く減衰し、密度が小さけ ればあまり減衰しません。銑鉄とコークスの混合比率を何 パターンか設定し、ミュオンを利用した実測値に当てはめ ました。そして次に、炉底レンガの損耗レベルを何パター ンか設定し、損耗していれば密度の小さいレンガ部が密度

図 4 宇宙線ミュオンとは

図 5 宇宙線ミュオンによる炉内透過画像測定原理

- μs (マイクロセカンド): 100万分の1秒。
- . プラスチックシンチレータ:シンチレータとは放射線によって発光する蛍光物質のこと。プラスチックシンチレータとはプラスチックに発光物質を混ぜて粒子が入 **%**3 射すると発光するようにしたもの。
- ョン: 乱数を用いたシミュレーションを何度も行うことにより近似解を求める計算手法。解析的に解くことができない問題も、シミュレー ションを多く繰り返すことにより、近似的に解を求めることができる。

の大きい溶銑に置き換わっていることを利用して、計算値 と実測値との対比からレンガの損耗量を算出しました | (篠 竹)(図8)。

この測定により、炉底湯溜り部分を横断する経路を透過 したミュオン強度から、溶銑主体部分の平均密度は6.35× 10³kg/m³と計算され、溶銑とコークスの比率が求められた。 また炉底レンガと炉内を横切る経路のミュオン強度から、測 定時点でのレンガの損耗レベルは約15~20cmと推定された。

また、計測期間中に1日半の高炉休風があった。休風とは、 羽口からのガス送風を止めることで、出銑はしないが炉の 中には溶銑がある静かな状態だ。このときのミュオンを用 いて計測した炉内密度が、高炉稼働時の計測値と比べて変 化していることから、休風時には溶銑・コークスの分布状 態が操業時と変わっていることが観測できた。

「当社はこの方法で炉底密度を測ってレンガの損耗量を 推定するスキームについて特許を出願しています。今後は 実用化に向けて、損耗状態をより高い精度で知る工夫をし ていかなければいけません。高炉内部の状況がより詳しく 把握できるようになれば、操業の安定化にも寄与する可能 性を持っており、大きな期待を寄せています」(篠竹)。

共同研究や実地調査による技術ノウハウの蓄積で ミュオンラジオグラフィーの実用化を進める

東京大学地震研究所 特任助教 理学博士 田中宏幸氏

ミュオンを使用したラジオグラフィーは、1966年に ノーベル物理学者のルイ・アルヴァレがミュオンの強い 透過強度に着目し、ピラミッドの内部構造について非破 壊検査を行ったのが始まりです。その後もミュオンの透 過強度を利用した巨大物質の非破壊検査は、地下鉄の内 部調査、隠された核物質を透視するテロ防止調査など世 界中で試みられています。

ピラミッド検査の場合は内部の小部屋に検出器を設置 できますが、私たちの研究では火山や高炉、建設された ビルの柱のように内部に検出器を装入できない対象物に ついても、水平方向のミュオンを使用することで外側か らの計測を可能にしました。

新日鉄と行った高炉の内部調査 では、細かい精度が要求されるた め、より高い分解能が必要である こと、高炉周辺は電気などのイン フラを使用することができないな

ど設置条件に制約があることが分かりました。今後は、 検出器のコンパクト性を追求し、精度を上げて空間分解 能を向上させることが実用化に向けた第一歩となります。

今回の新日鉄との共同研究による検出器の技術向上と ノウハウの蓄積を含めて、あらゆる実験・調査は有機的 につながり、ミュオンラジオグラフィー分野全体の向上 に寄与するものととらえています。

図 6 旧大分第2高炉解体炉底での測定

お問い合わせ先

図 7 高炉内の溶銑とコークスの様子

図8 レンガ損耗量の推定

環境・プロセス研究開発センター 製銑研究開発部 TEL0439-80-2835