モノづくりの原点 — 科学の世界 VOL.38

鉄の可能性を拓く 解析技術⁽²⁾

鉄鋼材料における解析の第一の役割は、鋼材の機能や 状態を支配する理屈(法則性、事象を支配するルール) を導き出し、鋼材機能や製造プロセスを改善・開発す ることにある。シリーズ2回目は、「鉄を視る」をテー マに、鉄鋼材料解析の最前線で活躍する顕微鏡の世界 にスポットを当て、代表的技術の概要と、鋼材開発に おける具体的な活用事例を紹介する。

顕微鏡の適用範囲

「光学」 から 「電子」 へと進化した 顕微鏡技術

鉄鋼業界で使われる代表的な顕微鏡は、倍率の低い順 に「光学顕微鏡」「走査電子顕微鏡」「透過電子顕微鏡」の3 つがある(図1)。

現在の光学顕微鏡の原型となる顕微鏡は16世紀に発明 され、19世紀になって急速に発達した。光学顕微鏡には、 小中学校の授業でも使われる「透過型顕微鏡(※1)」と「反 射型顕微鏡」があるが、可視光を通さない鉄鋼材料の解析 には後者が使われている。通常、鋼材試料の表面をエッ チング(腐食処理)して材料組織を反映する微細な凹凸を つけた試料表面に可視光を当て、浮かび上がった像(反射 像)を2枚のレンズ越しに拡大して観察する(図2)。その 倍率は500~1,000倍で、分解能の理論的限界は約0.2ミク ロンだ。

光学顕微鏡の登場後、長い歳月を経て、さらに微細な 構造を観察する目的で1930年代に発明された技術が「電 子顕微鏡」だ。可視光に頼らないこの技術は「走査電子顕 微鏡(以下SEM)」と「透過電子顕微鏡(以下TEM)」に大 別される。

SEMは、試料表面を観察する技術で、電子線ビームにより試料表面を連続的に走査(照射位置をずらす)したと

図 1 **反射型光学顕微鏡の** 図 2 基本的な仕組み

複数の顕微鏡を併用することで、ミリメートルのレベルから原子レベルまで 観察することができる。 可視光を透過しない鉄鋼材料の観察には反射型の光学顕微鏡 が利用される。

※1 透過型顕微鏡:ガラス片の上に試料を載せて、鏡に反射させた可視光を下から照射して透過光を観察する顕微鏡

きに生まれる2次電子や反射電子を検出し、画像化する ことで観察対象の情報を得る(図3)。鋼材では表面の凹 凸や結晶の種類・密度、それらを構成する原子の違いな どにより電子の検出強度が異なり、画像にコントラストが つくため、表面形状や材料組織の状態を観察できる。ま た、特性エックス線(※2)を検出する元素分析機能を使っ て、試料表層のどの位置にどのような元素がどの程度存 在するのかも分析できる。最新装置の分解能は0.002マイ クロメートル(2ナノメートル)以下だ。

分解能はナノレベル、 原子の世界に到達

TEMの原理は、透過型の光学顕微鏡とよく似ている。 反射鏡(可視光源)の代わりに電子銃を、可視光線の代わ りに電子線を、光学レンズの代わりに電磁石で電子線を 曲げる磁界レンズを利用し、観察試料を透過した電子線 を拡大して観察する(**写真1**)(前号本企画参照)。

物質の密度や原子の種類によって異なる電子透過量(透 過率)の違いから拡大画像には2次元的なコントラスト(濃 淡)がつく。例えば、鋼材試料の中に電子線を透過しやす い酸化物などの微小な粒子があるとそこが明るく見え、鉄 ではない他の物質がその場所にあることがわかる。また、 「電子エネルギー損失分光器(EELS)」(前号本企画参照) などの元素分析機能により、元素の種類と量(組成)を知 ることができ、さらに、電子線の散乱・干渉現象を利用 した「電子線回折」で得られる情報から、原子配列や結晶 構造を解明することができる。最近では、0.1ナノメート ル(1オングストローム)の空間分解能を持つTEMが開発 されている。SEMとの機能的な比較では、分解能でTEM が優れるが、SEMは塊状試料の観察ができ、観察領域が 広く、汎用性が高い。

吟味された観察個所に対して、このような各種のTEM 要素技術を適用し、複数の分析情報をうまく組み合わせ ることによって、例えば、結晶粒の中、あるいは粒界(結 晶同士の境界)にどんな析出物粒子があり、鉄がどのよう な状態(温度変化など)にあるときにその析出物が生まれ るのかなど、鋼材中で起こる現象の全体像を初めて正し く解釈することができる。

また、最近ではごく微小の析出物が鋼材特性に影響を与 えるケースがあるため、新日鉄では新しい観察技術として 「3次元アトムプローブ」(前号本企画参照)を活用してい る。同技術は針状試料に電圧をかけて、電界蒸発したイオ ンの放出位置と質量を測定して試料先端部の空間的原子配 列を分析する技術だ(分解能0.2ナノメートル以下)。最大 の特徴は、文字通り、原子1個ずつを分析できることにあり、 組成分析の精度がきわめて高い。鉄鋼業界での3次元アト ムプローブの活用で新日鉄は群を抜いて先行している。

最先端の解析手法を支える 高度な試料作製技術

これまで紹介した顕微鏡技術の機能を最大限に発揮させ るためには、観察対象となる試料の作製技術が重要だ。鋼 材解析では、通常、適当なサイズに切断した試料をまず光 学顕微鏡で観察してどの部分を深く観察すればよいのかを 見極め、次にSEM、さらにはTEMを使って詳細なミクロ解 析を行う。

TEMでは、電子線が透過するよう、試料の厚さを0.2マ イクロメートル以下にする必要がある。従来からのオーソ ドックスなTEM用試料作製技術としては、研磨加工などに よってある程度薄くした試料にイオンビームを照射(イオン ミリング)して試料中央部に孔ができる程度まで全体的にさ らに薄くし、孔の縁近くの非常に薄い部分を観察する手法 が用いられている。しかし、それでは本当に観察したい部 分を的確にサンプリングすることが難しい場合があるため、 新日鉄では「集束イオンビーム (FIB) 加工技術」と「マイク ロマニピュレーション技術」に着目し導入した。

前者は半導体デバイス分野の故障解析手法として急速に 進歩した技術で、直径10ナノメートル程度のイオンビーム で、見たい部分を狙った形状に切り出し、電子が透過しや すい均一な薄膜(厚み100ナノメートル以下のレベル)にし て、TEMで子細に観察している。一方後者は、ピンセット でもつかむことのできない極小の試験片を操り、TEMなど の解析装置に装入する技術だ。新日鉄はこれらの試料作製 技術を、業界で初めて鋼材解析に導入した(**写真2**)。

3次元アトムプローブも、FIB加工技術で針状の試料を 作製してその先端部分を分析している(**写真3**)。アトムプ ローブは分解能が高い反面、先端直径50~100ナノメート ル程度の針状試料の1個所しか見ることができない。一方、 TEMは試料が薄膜状で比較的広い領域から選んで観察する ことができるため、解析目的に応じて両装置を使い分け、そ れに適した試料を作り分けることが望ましい。

試料作製技術などの周辺技術の開発はきわめて重要だ。 解析装置がいくら進歩しても、その能力を最大限に引き出 すための周辺技術が追従しなければ宝の持ち腐れとなる。

現象を理解し、新たな発想で 鋼材特性を操る

最後に、「高炭素鋼線材」を例に顕微鏡を用いた解析技術 の具体的な活用手法を紹介する。

橋梁ケーブルなどに使われる高炭素鋼線材の最大の特徴 は、強度が高いことにある。そのメカニズムを金属組織の観 点から見ると、硬いセメンタイト(炭化鉄)と軟らかいフェラ イト(a鉄)が交互に層状に連なる「パーライト組織」がその 特性を担っている(**写真4**)。そして今日まで、「フェライト層 を薄くすれば強度が上がる」という事実・理屈に基づき鋼材 開発が進められている。

明石海峡大橋のメインケーブルに使われる高強度の高炭

素鋼線材の開発では、耐食性を出すために亜鉛めっきを施 すが、めっき時の熱履歴(450°C)によって線材の強度が低 下する現象が起きた。当初、光学顕微鏡やSEMの観察では その原因が解明できなかったため、TEMで拡大して観察す ると、めっきした線材でセメンタイト層の分断(球状化)が 起き、フェライト層が部分的に厚くなってパーライト組織 が崩壊していることが分かった(**写真5**)。高強度線材の組 成は鉄と炭素が主役だが、マンガン(Mn)、珪素(Si)、クロ ム(Cr)なども添加する。それらの濃度分布を解析した結果、 セメンタイト層が分断された線材の中で分断が起こってい ない個所では、マンガンがセメンタイト層の中にあり、珪 素はフェライト層のセメンタイト層とフェライト層界面近く にあることが分かった(**図4**)。

「見る・測る」ことによって現象が理解されると「考える」 領域に移る。「珪素が何らかの役割を果たしているのではな いか」という疑問と、従来からの金属学の知見に基づき、「拡 散速度(熱による原子移動の速度)が遅い珪素原子がセメン タイト層の近くに濃化していると、両層のすべての原子移動 が抑制され、セメンタイト層の分断(球状化)が起こりにくく なる」という仮説に到達した。そして、製鋼段階で珪素の添 加量を増やした線材に亜鉛めっきを施して、引張り強度の 確認試験を繰り返した結果、亜鉛めっき後も強度が低下し ない特性を確保することができ、実際にその試験片をTEM で観察して、セメンタイト層の分断が起きていないことを確 認した(**写真6**)。こうしてフェライト層の厚さが50ナノメー トル以下の橋梁ケーブル用高強度線材(線径約5ミリメート ル、強度約2,000MPa)が誕生した。この事例は、材料を「視る」 ことが「診る」ことにつながり、的確な「処方せん」を導き出 すことができた典型例だ。

タイヤ用のスチールコード (線径約0.2ミリメートル) では、 その技術的ハードルはさらに高く、高い引張り強度と、過酷 な伸線加工に耐える延性を両立する線材開発が求められた。 基本的に、線材は細く絞るほど強度は増すが、同時に延性が 低下する。このレベルになると、TEMで観察してもセメン タイト層とフェライト層の境界が不明瞭で、詳細な分析が困 難だ。そこで新日鉄では、3次元アトムプローブを活用して 炭素原子の濃度分布とその変化を詳細に解析し、その解析 結果に基づいて強度・延性を高いレベルで両立させるスチー ルコード (フェライト層厚さ3~4ナノメートル) 向けの高炭 素鋼線材を開発した (図5)(図6)。

最終回となる次号では、「物の状態を探る」をテーマに、外からの「刺激」に応答する原子の様子をとらえることで、物質のさまざまな情報を得る解析技術を紹介するとともに、「鋼材組織の不均一性」に挑戦する解析手法の今後を展望する。

監修新日本製鉄(株)技術開発本部 先端技術研究所解析科学研究部長 佐近正(さこん・ただし)

プロフィール 1956 年生まれ、北海道出身。 1982 年入社。表面・界面の研究開発に従事。 2006 年より現職。

図5

スチールコード内の

パーライト鋼の伸線加工量と 図6 引張強さの関係

