モノづくりの原点 — 科学の世界 VOL.37

鉄の可能性を拓く 解析技術⁽¹⁾

「見る、測る、考える(見・測・考)」は、モノづくり を含めたすべての創造の原点。その一連の行動を支え る英知が「解析技術」だ。鉄の解析技術には、製造現 場を支える「現場での分析・解析技術」、新たなプロ セス開発に重要な「プロセス解析技術」と、製品とし ての新しい材料特性因子を解明する「材料解析技術」 がある。本シリーズでは「材料解析」、中でもさまざ まな鉄の特性を引き出す根幹を担う「空間的な原子配 列を見る」世界を中心に、材料開発における解析の意 義や、ナノレベルでの代表的な解析技術が可能にした 鋼材開発事例を紹介するとともに、今後の解析手法の 方向性を展望する。

材料組織を「見る」 ことから すべては始まる

人間は物事を考える前に必ず「見る」。ありのままの姿 を正確に見て、それを客観的に測ることによって対象を詳 しく知り、考えながら深く見通す、見抜くことが創造の原 点だ。そのための道具(分析・解析技術)の工夫・進化が、 観察と思考の幅を広げ、科学の発展を支えてきた。材料 科学分野においても、材料特性の制御因子を見抜き、素 材の持つ本質を最大限に引き出すことが、新たな材料開 発の基礎となっている。

現在、社会環境と価値観が変化・多様化する中で、鉄 鋼材料に対するニーズは細分化・厳格化し、それに対応 する高度な材質制御が不可欠になっている。また、材料 開発段階だけではなく、製鉄プロセスにおいて、ppmレ ベルでの材料成分制御やナノテクノロジーに根ざした高 度な材料組織制御が、4,000~5,000m³の大容積を持つ高 炉での原料溶解から始まる、トンレベルの安定した鋼材 品質を支えている。

鉄鋼材料において、開発基盤となる「見る」アクション は、鉄鋼材料が持つ不均一性の総称である「材料組織」を 見ることにある。鉄鋼材料の基本特性である強度、靭性 (粘り強さ)などの機械的性質は、材料の組織に強く依存 し、特に、鋼中の析出物や介在物が強度に与える影響は 大きい。ハイグレードの鉄鋼材料では介在物を極少化し

材料特性のキーとなる組織因子の階層図1

透過電子顕微鏡(TEM)の原理 図2

高電圧で加速した電子を試料に照射し、入射電子と 試料の相互作用により発生した信号をとらえて構造 や組成を観察する。 て、ナノサイズのごく微細な析出物の組成・構造・サイズ・ 空間分布・個数密度などを高度に制御して、狙った特性 を発揮させている。

材料組織制御はいわば隠された「仕掛けづくり」だ。例 えば、自動車が衝突する瞬間に硬くなり安全性を高める自 動車用鋼板 (TRIP 鋼) など、鋼材製造直後には機能せずに ユーザーでの使用段階で機能が発現するように制御され ている仕掛けもある。その仕掛けがどのようなもので、ど のように入れれば確実に機能するかということを追求する 際に、材料組織を見て、仕掛けの原理を探る解析技術が 重要になる。

鉄鋼材料の多くは数十µm程度の結晶粒の集合体(多結 晶体)だ。その材料組織と機械的特性との因果関係を解明 するには、まずその内部構造を理解する必要がある。目 指す機械的特性が、「組織の集合体(マクロ内部組織)」> 「結晶粒内の構造、粒界(結晶同士の境界)」>「原子レベル の微細構造」という階層のどの仕組みや物性に依存してい るのかを特定して、見るべきサイズファクターを決定する (図1)。

鉄鋼材料開発を支える 「静的」「動的」 解析技術

では、材料組織を見るためにはどのような解析技術が 必要なのだろうか。

鉄鋼材料では、元素分析機能を高度化した電子顕微鏡

技術が、ナノサイズの微細析出物組成の解析手法として 確固たる地位を占めている。従来から使われている「透過 電子顕微鏡(TEM)」(※1)(図2)に加えて、最近では元素 マッピング(分布を視覚的にとらえる)機能が高性能化し、 またエネルギーフィルタリング機能を有する「電子エネル ギー損失分光器(EELS)」(※2)(図3)が使われ始め、析出 物に関する高度な解析情報が得られるようになった。

EELSを用いると試料の化学組成や原子の結合状態に関 する情報を得られる。また近年、測定時の試料ドリフトを 計測ソフトで位置補正しながら、ナノレベルの元素マッピ ングを得ることが可能になっている。

さらに現在、ナノレベル解析技術の極致とも言える「**3次 元アトム・プローブ**」(3次元での元素種類と原子位置情報 を得る技術)(**図4**)が、新製品開発の武器として活躍の場 を広げている。この手法では、材料中の極めて狭い領域を ピンポイントで狙って観察することが必須となるため、観 察対象となる試料作製技術を高める集束イオンビーム加工 技術(*3)などの周辺技術を含めた総合力が不可欠だ。

一方、製造プロセスでは、上述の「静的観察」に加えて、 温度履歴など各種プロセス条件の変化によって材料がど のように姿を変えていくのかを知る「動的観察」も重要な 要素となる。この領域では放射光による「高強度エックス (X)線源」を活用した高温動的観察技術が有効だ(図5)。 ワンショットの撮影時間を短縮して対象物の変化を連続 的・動的にとらえることで、例えば、高温下での結晶成長 の制御因子を容易に導き出すことができる。

- ※ 1 TEM : Transmission Electron Microscope
- * 2 EELS : Electron Energy-Loss Spectrometer

※3 集束イオンビーム加工技術:集束イオンビームを使用した微細な切削加工により、解析対象物の特定個所から、薄片状などの観察用サンプルを作製する技術

解析結果に基づき 「メカニズムの仮説を立てる」

解析技術が材料特性の仕掛けづくりに寄与した例とし て、溶接部の高強度高靭性鋼化を図った鋼(2007年7月号 の本企画参照)の誕生経緯を紹介する。

通常の鋼材は、溶接時間を短縮するために高温で溶接 (大入熱溶接)すると、溶接部の温度が上がり過ぎて熱で 結晶粒が粗大化し、靭性が低下してしまう。それを抑え るためには溶接部の材料組織制御が重要であり、高温に なっても結晶粒が粗大化しない仕掛けをあらかじめ鋼材 に入れておく必要がある(**写真1**)。

溶接後に溶接部の温度が徐々に下がり、鉄の結晶が低 温で安定な組織(フェライト)に変態するときに結晶粒の 粗大化は起こる。そこで、あらかじめ結晶粒の中に、フェ ライト(IGF:粒内フェライト)へ変態する核(起点)となる 析出物を数多く埋め込んでおくことで、結晶粒の粗大化 を抑制する仕掛けを考案した。その仕掛けづくりは、解 析技術によるメカニズムの解明を前提として成り立ってい る(**写真2**)。

添加した析出物の動きや働きは、動的観察や界面での元 素分布をナノレベルで見ることによって初めて理解・制御 することができる。実際に、「走査イオン顕微鏡(SIM)」(※4) (図6)で動的に観察すると、粒内の析出物(酸化物)から優先 的にフェライト変態が進行する様子が確認できる(写真3)。 フェライト変態起点の状況を正確に把握するために、 集束イオンビームでピンポイントに分析箇所を抽出・切り 出して観察価値の高い試料を作製し、析出界面近傍の構 造と合金元素分布を調べた。こうした精緻な解析により、 窒化チタン (TiN)とマンガンサルファイド (MnS)を複合 析出させると、近傍にマンガン (Mn) 濃度の希薄領域がで き、そこで粒内フェライトが生成しやすいことが判明した。 ここまでが「見る・測る」といった分析的視点の段階だ。

そこまで分かると、マンガンサルファイドが必須なのか という疑問が生まれ、「考える」という材料科学的視点の段 階になる。その疑問をもとにさまざまな析出物の働きを解 析し、その結果、チタンやマンガンの酸化物がより強固な フェライトの変態起点になることを発見した。実際に、元 素マッピングによってチタンマンガン酸化物の周囲に大き なマンガン欠乏層が生じていることを見出した(**写真4**)。

鋼材開発における新たな特性付与は、先にマクロレベ ルでの現象が発見されるケースが多い。上述した溶接部 高強度高靭性鋼についても、ある組成を持つ鋼材が特定 の熱履歴を経たときに靭性が向上することを発見し、「そ れはなぜか」という疑問からマクロ解析を行った結果、特 徴的にマンガン、窒化チタンを多く含有していることがわ かり、さらに、その結晶組織を光学顕微鏡で見ると、フェ ライトの結晶粒が小さくなっていることが分かった。次に 「なぜ小さくなるのか」という疑問を持って、電子顕微鏡 でフェライト変態の起点となっている部分を精緻に解析 し、析出物の周りのマンガン濃度が低い部分でフェライト

% 4 SIM : Scanning Ion Microscope

が生成していることを突きとめた。

最も重要なアプローチは、その後、そうした解析結果 をもとに、マンガンサルファイドだけではなく、チタンマ ンガンオキサイド (酸化物) でも同じような効果が得られ るのではないかといった「メカニズムの仮説を立てる」こ とだ。そしてその仮説に従って、チタンマンガンオキサ イドが生成する鋼材の組成設計とその法則性を導き出し、 実験で機能を実証することで新たな鋼材設計指針を構築 することができた。明確な組成設計条件や法則性を確立 しなければ、新鋼材を安定した品質で大量に製造するこ とはできない。

新たな創造に向けて未踏領域に挑む 解析技術

これまで述べてきたように、解析技術によって現象や 従来技術の理屈が分かると(見る・測る)、新たな鋼材開 発の知恵や効果的な手法を見出すことができる(考える)。 つまり、現象の正しい理解が新たな価値を生み出す。

今後、解析技術の向かう方向には二つの軸がある。一 つは、原理・原則から材料特性を発現させるためのナノ レベルの解析。特に鉄鋼技術の特徴として、こうした原 子レベルの制御をキロメートル・トン単位の製造プロセス 制御にスケールアップさせることが不可欠だ。逆に言えば、 狙った特性を持たせるための仕掛けは何か、いかに働い ているのかを理解しなければトンレベルでの鋼材特性を 維持することはできない。今後、原子レベルの解析を マクロスケールの実用材評価に連続的にサイズアップす る、つまり、導き出したナノ組織設計をマクロ構造材料設 計にいかに結びつけていくか、階層をつなぐ鍵をいち早く 見抜くことが大きな技術的テーマとなっている(**図7**)。

もう一つの軸は、経時変化をとらえる「動的解析」だ。製 造時はもちろん、ユーザーでの鋼材使用時に起こる組織変 化や特性変化を正確にとらえない限り、緻密なプロセス制 御は行えない。特に、ナノレベルで刻々と変化する動的解 析技術には未踏領域が多く、現在、非破壊検査や温度制御 の経時変化に追従する解析技術の高度化が望まれている。

次号からは、ナノの世界に挑む代表的な解析技術をさ らに詳しく解説するとともに、実際の鉄鋼開発事例を通し て解析技術の存在意義と今後の技術的方向性を考察する。

監修	新日本製鉄(株) フェロー Ph.D. 技術開発本部 先端技術研究所長	橋本	操 (はしもと・みさお)
	プロフィール 1952 年生まれ、東京都出身。 1977 年入社。表面科学分野の研究 2006 年より現職。	開発に従	事。
	技術開発本部 先端技術研究所 解析科学研究部長	佐近	正 (さこん・ただし)
	プロフィール 1956年生まれ、北海道出身。 1982年入社。表面・界面の研究開 2006年より現職。	発に従事	o

