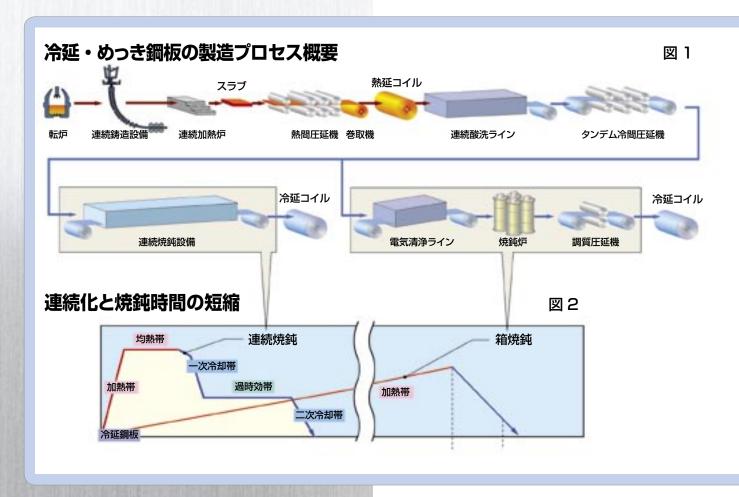
モノづくりの原点 — 科学の世界 VOL.36

成形性に優れた 軟らかい鉄 薄板(2)

自動車外板パネル用の鋼板には、美しいフォルムを作 り出すためのプレス成形性が要求される。大きな変形 を可能にする軟らかい鋼板を作るためには、鋼中の 炭素や不純物を取り除き、あるいは化合物として無害 化して、鉄の結晶方位を緻密に制御する必要がある。 シリーズ2回目では、前号で解説した鋼板の軟質化 の原理と仕組みに引き続き、過酷な深絞り成形に適し た軟らかい鋼板をトン単位で生産する製造技術開発の 挑戦を紹介するとともに、今後の自動車用薄鋼板開発 の未来を展望する。

軟鋼板製造は炭素との戦いの歴史


自動車外板パネル用に深絞り成形される薄鋼板には、加 工しやすい軟らかさが求められる。鉄は純鉄に近いほど軟 らかくなるが、その軟らかい鉄を作る阻害要因となるのは 「炭素」であり、軟鋼板製造工程には、炭素や不純物を徹底 的に取り除き、加工しやすいように鉄の結晶方位を制御す るさまざまな技術が織り込まれている。

まず製鋼工程で炭素や不純物の除去を中心とする成分調 整を行い低炭素鋼をつくり込み、鉄の結晶方位を好ましい 方向に制御しやすい状態にする。その後熱間・冷間圧延で 形状・材質を整えて、焼鈍 (焼きなまし) 工程で結晶方位を そろえるとともに鋼板に溶け込んだ炭素 (固溶炭素)を鉄の 炭化物(セメンタイト)として固定無害化し、軟らかくして いる。こうした材質制御を350トンの溶鋼(おおよそ12畳の リビング一部屋分の容量)を0.8mmの薄鋼板に仕上げるま での一貫工程で行っている(図1)。

ここでは、「焼鈍」と「熱間圧延時の材質制御」に焦点を当 てて、炭素を取り除くための製造技術を解説するとともに、 進化する外板パネル用鋼板に込められた、さらに高度な炭 素の制御技術を「IF鋼」「BH鋼板」を例に紹介する。

結晶制御の鍵を握る焼鈍

深絞り用鋼板を製造する上で最も重要な工程は「焼鈍 | だ。冷間圧延で薄く延ばされた鋼板はカチカチに硬くなっ

ているため、この焼鈍工程で軟らかくされる。この軟化は、 冷間圧延で延ばされて硬くなった結晶粒から次々と軟らか い粒が生まれる「再結晶」と呼ばれる現象によってもたらさ れる。また、焼鈍工程では深絞り成形性を向上させるため に再結晶によって結晶の並び方を制御すると同時に、後述 する鋼板材質の経時劣化を抑制するために最終製品中の固 溶炭素量を低減する。

焼鈍方法には大きく分けて「箱焼鈍 (バッチ焼鈍)」と「連 続焼鈍」があり、歴史的には前者の技術が古く、現在でも 世界各地で利用されている。この二つの焼鈍方法の大きな 違いは、加熱と冷却の速度(時間)にある。箱焼鈍ではコイ ル状の鋼板を加熱に1日、冷却に3日程かけてゆっくり熱 処理する。一方連続焼鈍では加熱から冷却まで合計でも10 分程度で完了する(図2)。

箱焼鈍ではゆっくりと加熱されることで鋼中のアルミニウ ム(AI)が窒素(N)と結合して、再結晶で出てくる粒の中で 深絞り成形性に適したテント形の結晶粒だけを選択して大 きくしてくれるため、比較的多くの炭素を含む鋼板でも良 好な深絞り成形性を確保できた。また、ゆっくりと冷却す るために、高温で溶け出した炭素を冷却中に再度セメンタ イト(鉄炭化物)の形で固定できるため、鋼板材質の経時変 化も軽減される。しかし、焼鈍に3~4日もかかることや、 大きな鉄の塊(コイル)を温めたり、冷やしたりするために 均一性に欠けるなどの課題もあり、より短時間で鋼板温度 も均一に処理できる連続焼鈍が導入された(1972年)。連続 焼鈍は生産性や材質の均一性に優れるが、加熱速度が速く、 アルミニウムと窒素が結合する時間が確保できないために、

ストレッチャー・ストレインの例 写真 1


見られる例

プレス品での例

熱間圧延後の巻き取り時の セメンタイトの集約

セメンタイトには マンガンと炭素が 吸い寄せられて太 る。しかしマンガ ンの吸い寄せられ る速度が遅いた め、マンガンが多 いとセメンタイト がなかなか太れ ない。

図3

マンガン(Mn) 炭素(C)

深絞り成形性向上の障害となる炭素が本当の意味で「悪役」 となり、より厳格に管理する必要が出てきた。

焼鈍後の冷却の工夫で品質変化を防ぎ 滑らかな外板を維持

自動車の外板パネル用鋼板には加工性と同時に表面の滑 らかさ、美しさが求められる。各種の疵以外にも、プレス 加工に伴う表面の小さなしわ(面ひずみと呼ばれる)や模様 の発生を回避することが非常に重要である。

鋼板中に極微量溶けている炭素や窒素は室温でも鋼中を 動き回り、深絞り成形の際にすべり変形をしようとする場 所に集まって、鋼板の変形を阻害する。この現象は「**時効**| と呼ばれ、製造からの時間経過とともに延びが小さくなる とか、硬くなるなどの材質劣化として表れる(時効劣化)。 また、時効後の鋼板を軽加工すると、部分的に変形が集中 した筋状の模様 (ストレッチャー・ストレイン (写真1)) が 発生して外観が損なわれ、自動車外板パネル用の素材と しての商品価値はなくなる。また鋼板が硬くなるとドアの 取っ手部のくぼみ近傍などで小さなしわ(面ひずみ)が発生 する。従って、鋼中に残った固溶炭素による時効劣化を防 ぐために、焼鈍後も固溶炭素が残らないようにする必要が ある。そこで新日鉄では、焼鈍して冷却した後に炭素をセ メンタイト(鉄炭化物)として固定無害化するための熱処理 すなわち「**過時効処理**」を施している。

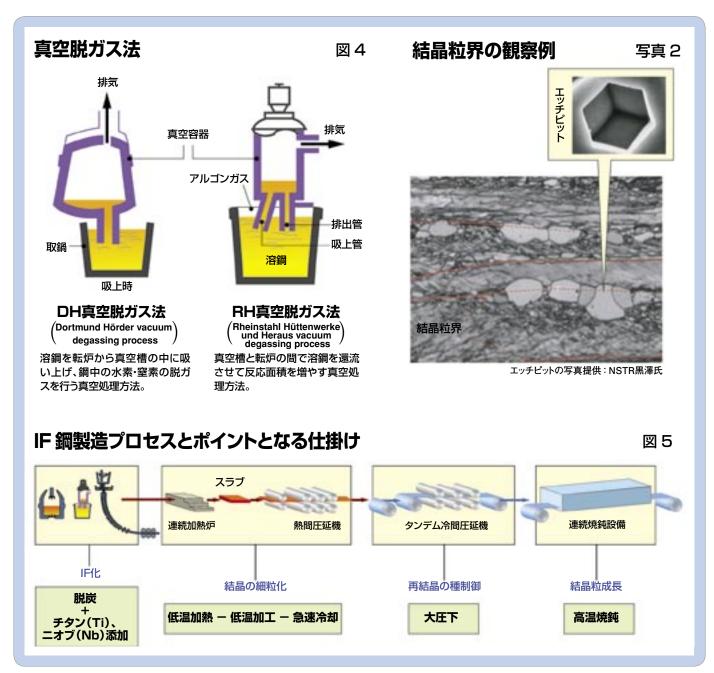
過時効処理は、700℃以上の高温での焼鈍で結晶の向き を制御した後、鋼板を300℃付近まですばやく冷やし、そこ でセメンタイトの種をたくさん作り、しばらく保持すること で鋼中の固溶炭素を集めてセメンタイトを太らせる処理だ。 この種を作るために硫化物を分散させたり、冷却する温度 を下げるなどの工夫を行って、実用上、時効劣化の無い鋼 を製造している。

マンガン量と熱間圧延後の巻き取り 温度を制御し、材質の全体最適を狙う

深絞り成形性を向上させるための結晶方位制御には、固 溶炭素をなくすことと、セメンタイトによる加工時の乱れ (前号参照) の影響を最小にすることが重要だ。このために 成分調整と圧延時の温度制御を行っている。

従来、冷間圧延する前に、熱延鋼板を高温で巻き取る方 法が採用されていた。巻き取り後は非常にゆっくりと冷却 されるため、生成したセメンタイトが十分に大きく太り、 加工時に乱れが発生する場所を少なくすることができ、ま た、ゆっくりとした冷却中に、ほとんどの炭素をセメンタ イトに集めることができる。

しかし熱延コイルは大きな鉄の塊なので、高温で巻き取 られるほど表面と内部で冷却速度が異なり、セメンタイト の分散の程度や固溶炭素量がばらつき、部分的に結晶の向 きが十分にそろわない場合がある。これを回避するために は、巻き取り温度を下げることが最も効果的である。この


矛盾を解決するために、セメンタイトの太る速度を詳細に 検討した結果、鋼板中のマンガンを低下させることで低温 巻き取りでもセメンタイトが太りやすくなることが判明し た(前頁図3)。そして比較的低温での巻き取りでも炭素と セメンタイトを理想の形に制御でき、安定した深絞り成形 用の鋼板が製造可能となった。

IF鋼—成分調整、温度管理、圧延制御で 理想的な結晶方位を生み出す

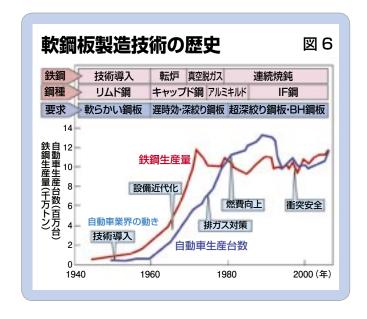
1980年代後半、車体形状の複雑化やいくつかに分かれて いた部品の一体化の要求とともに自動車用外板パネルにそ れまで以上の過酷な深絞り成形が求められるようになり、 製鋼工程で低炭素鋼(0.01~0.05重量%程度の炭素を含む) よりさらに炭素を極少化 (純鉄化) して結晶方位を制御しや すくする技術が追求されるようになった。

純鉄化するプロセスの鍵は、極限まで炭素や不純物を除 去して成分を整える「製鋼工程」にある。そのポイントは、 1970年台に登場した「真空脱ガス法 (二次精錬)」だ。転炉 で一次精錬が終わった鋼を、さらに真空槽の中で脱炭、脱 ガス (脱水素、窒素)、脱酸し、炭素含有量を10ppm (※1) 以下まで落とすことが可能となった(図4)。

このようにして製造された純鉄に近い鋼にチタン (Ti) や ニオブ (Nb) を適量添加し、わずかに残った炭素を無害化 する。これがIF (Interstitial Free) 鋼だ。冷間圧延で延ばさ れて硬くなった結晶粒から焼鈍時に軟らかい粒が生まれる 再結晶の過程を観察すると、冷間圧延前の粒と粒の境界(結 晶粒界)で生まれた粒が深絞り性向上に有利なr値(※2)の 高いテント状の結晶方位を持つことがわかる(写真2)。従っ て、できるだけ多くの結晶粒界を準備するために、冷間圧 延前に結晶粒をできるだけ小さくする。IF鋼は不純物が非 常に少ないため、結晶粒が簡単に大きくなってしまう。こ

※ 1 ppm: parts per million。100万分の1の濃度を表す単位。 ※2 r値(ランクフォード値):鉄の縮み変形のしやすさを表現する指標。

のため、熱間圧延を始める際の加熱温度を低くし、できる だけ低温で熱間圧延し、結晶粒が大きくなる前に冷却する。 また、チタンやニオブの添加量を調整することでさらに結 晶粒を小さくする。このようにして最適化された熱延鋼板 は冷間圧延後、今度は結晶粒界から生まれたテント状の結 晶方位を持つ粒をできるだけ太らせるために高温で焼鈍さ れる。IF鋼は低炭素鋼と異なり、鋼中の炭素はチタンやニ オブで固定されているため、時効劣化の心配も無い。


現在、新日鉄では高度な製鋼技術と圧延技術、そして熱 間圧延から連続焼鈍までの緻密な温度制御技術で、過酷な 深絞り成形に耐える高品質なIF鋼を生産している(図5)。

軟らかい、けれども強い"生モノ"。 「BH鋼板」

外板パネル用鋼板には軟らかさと美しさが要求される が、完成した車では外板が衝撃に耐えられる特性も求めら れる。小石が飛んできたり、駐車場で隣の車にドアをぶつ けられたりしたときに簡単に凹んでしまわない特性(耐デ ント特性) も自動車外板パネルの重要な機能の一つである。 1mmに満たない薄い鋼板に耐デント特性を付与するには、 鋼板を硬くする必要がある。しかし、硬い鋼板はプレス成 形しにくいばかりでなく、プレス成形した時に部分的に小 さなしわ(面ひずみ)が発生して外観を損ねる。この矛盾を 解決するために開発されたのが「プレス成形時には軟らか く、商品完成後の使用時には硬くなる鋼板 | である、「BH (焼 付硬化: Bake hardening) 鋼板」だ。BH特性とは、鋼板に 極微量残された固溶炭素が、自動車車体に塗装された塗料 を乾かす焼付け工程(約170℃で20分程度)時に鋼中を移動 し、すべり変形をしにくくすることで鋼板を硬くする特性 である。新日鉄では、チタンやニオブの添加量を制御して、 室温で約6カ月間保管しても性能に変化がなく、成形に悪

影響を及ぼさない微量の固溶炭素をあえて残し、成形後の 塗装焼付け時に部品を硬くするBH鋼板を開発し、実用化 している。このような製品は、いわば「生モノ」で、賞味期 限とも言える耐時効性の保証期間に使用されることにより、 外板パネルの薄手化すなわち軽量化にも貢献している。

今特集では自動車の美しいフォルムを作り出す外板パネ ル用鋼板を取り上げ、その成形性向上の機構と製造技術に ついて概説した(図6)。現在の自動車産業界では、CO₂排 出量削減に代表される環境との調和と、衝突安全性向上な どによる社会との調和を両立させる活動が活発になってい る。一般的には相矛盾するこれらの要求に応える技術の一 つが高強度鋼板の適用拡大である。より強くそしてより軽 い自動車を目指して、高強度鋼材の開発とその適用技術の 革新が進められている。次回の薄板シリーズでは自動車用 高強度鋼板に焦点を当て、進歩し続ける鉄鋼製品をミクロ なスケールからのぞいてみたい。

優れた成形性をベースに、強く、しなやかな鉄へ

鉄鋼材料はお客様のさまざまな要求に答えてその材料特 性を進化させてきました。この過程で、生産性や品質、さ らには材料特性を大きく向上させるために、製鋼から圧延・ 焼鈍、そして表面処理にいたる各製造工程で、技術革新や 設備導入が進められてきました。

自動車は私たちの生活の一部であり、切り離すことので きない存在です。それゆえに私たちを取り巻く環境や社会 との調和が強く求められています。この中で自動車には、 強さという特性をも捨て去った徹底的に軟らかい鉄「IF 鋼 | から、タイヤをしなやかにそして強くするための世界最強 のワイヤまで、ありとあらゆる特性の鋼材が適用され、そ の性能向上に貢献しています。外見だけでは違いがわかり にくい鋼材ですが、自動車の安全性向上、燃費改善による

CO₂排出量削減などを目指し、あらゆる成形加工に耐え、 強く、しなやかな鉄へと着実に進化しています。社会や環 境の変化に対応する「鉄」。今後もその歩みを止めず、素 材の立場から社会へ貢献していきます。

監修 新日本製鉄(株) 技術開発本部 鉄鋼研究所 鋼材第一研究部長

> 学 (たかはし・まなぶ) 高橋

プロフィール

1956年生まれ、熊本県出身。

1982 年入社。

自動車用薄鋼板、特に高強度鋼板の 研究開発に従事。

2007年4月より現職。

