鉄鋼原料(1) 鉄鉱石

鉄鋼製品の製造工程は、地球上に豊富な資源として存 在する鉄鉱石(酸化鉄)を石炭(コークス)で還元して、 鉄分を取り出す製銑工程から始まる。その還元は約 300 年続く高炉法で行われているが、今日まで銑鉄の 品質と生産効率を高めるための原料改質や副原料活用 などの新たな要素技術が開発されてきた。今号から3 回にわたり、鉄鋼製品の「原料」の世界にスポットを 当てて、天然資源としての生成の歴史やその活用技術 を解説する。第1回目は、鉄鋼製品の源である「鉄鉱石」 の生成過程と埋蔵量、採掘条件などについて紹介する。

酸素の発生とともに 鉄鉱石として姿を現した鉄

鉄は、137億年前の宇宙誕生(ビッグバン)後に始まっ た「核融合(熱核反応)」による元素の生成過程で、最後 に生まれた物質だ(図1)。陽子や中性子の結合力が強く、 元素の中で構造的に最も安定した物質だといわれている。 他の元素も核融合を繰り返すうちにいずれは鉄に変わっ てしまうため、宇宙に存在する物質の中で、鉄の存在量 は圧倒的に多い。

約46億年前に生まれた地球においても、鉄は34.6重量% を占め、他の天然資源と比べて桁違いに埋蔵量が多い。 各資源の生成時期はそれぞれ異なり、石油や石炭は、数 億年~数千年前に誕生したものが多いが(石炭については 本シリーズ3回目で紹介)、鉄鋼製品の主原料となる鉄鉱 石 (写真1) は、25億年前 (太古代) に大量に生まれたと考 えられている。

では、25億年前、地球上になぜ多くの鉄鉱石が姿を現 したのか。

地球の誕生当時、大気には酸素がなく、二酸化炭素や 塩酸、亜硫酸ガス、窒素が充満していた。大地には酸性 雨が降り注ぎ、地表の鉄分が溶けてイオンとして海へ流れ 込むとともに、海底火山によって地球内部の鉄が噴出して 多くの鉄イオンが海中に供給された。約30~25億年前に

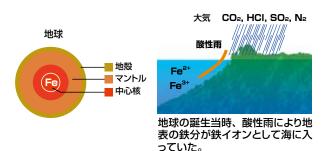

鉄の誕生 **#** H,He **8** C,O Si,Mg,···

図 1

恒星の引力で原子同士が熱 エネルギーを生み出し、新た に陽子、中性子の結合が進 み、水素、ヘリウム以外の元 素が生み出される現象が、「核 融合」(熱核反応) だ。やが てこの反応は鉄で終わった。

酸化鉄(鉄鉱石)の生成過程

38億年前

◀西オーストラリアに現生する ストロマトライト

O2 植物 「 シアノバクテリア Fe₂O₃, Fe₃O₄

鉱山

図2

約30~25億年前に生まれた光合成 を行う「シアノバクテリア」「ストロ マトライト」により海中に供給され た酸素が鉄と結合して酸化鉄として

海底の隆起により鉄鉱床を含む層 が表層に現れ、鉱山ができあがっ

堆積。「鉄鉱床」が形成された。

- 20億年前 - 15億年前

46億年前

「シアノバクテリア」や「ストロマトライト」(写真2) など の細菌・藻類が生まれ、光合成によって大気中の二酸化 炭素を吸い込んで酸素を排出するようになった。そして、 その酸素が海中に豊富に溶けていた鉄イオンと結び付き、 固体の酸化鉄となって急速に海底に沈殿・堆積して「プレ カンブリア | という時代の地層(鉄鉱床)を形成した。約15 億年前、その鉄鉱床は造山活動によって隆起して地上に現 れ、鉄鉱石を豊富に含む鉱山を作り上げた(図2)。

地殼、マントル、中心核で構成される地球全体で見る と、他の元素に比べて重い鉄は、地球の基本構造が安定 する過程で重力により内部に沈んだため、中心核にいくほ ど量が多くなるが、珪素や硫黄など比較的に軽い他の元 素と結び付き、化合物として地殻表層にも残った。現在、 私たちが利用している鉄は、こうして地表に残されたもの であり、それは地球全体に存在する総量のごくわずかに しかすぎない。

鉄鉱石の偏在は 大陸移動によってもたらされた

状になっている(写真3)。 私たちは この鉄鉱床から多くの鉄鋼資源を

採掘している。

地球には鉄が豊富に存在するものの、現在、地表で鉄 鉱石を大規模に採掘できる場所は限られている。この地 理的偏在はどのようにして起こったのか。

鉄鉱床が隆起した太古代、世界は鉄資源を豊富に含む 一つの超大陸(ローレンシア大陸)を形成したが(図3)、

その後、長い歳月をかけて起こった大陸移動によって分 断され、そこに比較的新しい時代に生成した地層が付加 されることで、現在のような大陸地図が作り上げられた。 その結果、多くの鉄鉱石が堆積している太古代の鉄鉱床 は世界のさまざまな地域に広く分散し、鉱山として地表に 顔を出すことになった(図4)。現在、私たちが製鉄資源 として活用している鉄鉱石は、主にこれらの鉱山から採掘 されている。

現在、大規模な採掘が行われている鉄鉱床は、太古代 に誕生した鉄分を多く含む「縞状鉄鉱床(BIF:Banded Iron Formation)」だ (写真3)。BIF はかつて海底に堆積 していた証拠として細かい縞状になっている。縞状になっ ている理由の有力な説は、約30~25億年前に藻類が生ま れ始めたころ、海中には鉄だけではなくシリカ(SiO₂)も 溶けており、太陽光の照射量が多い夏季には、ストロマ トライトが活発に光合成して大量の酸素を排出すること で多くの酸化鉄が沈殿したが、照射量が少なく温度が下 がる冬季になるとあまり光合成をしなくなるためシリカが 多く沈殿して、時間経過とともにそれが交互に堆積したと いうものだ。その結果、他の元素との親和性の高い鉄は、 組成の異なる化合物として鉄鉱床の断面に年輪のような 変化をもたらした。この層を数えることで堆積した年代を 細かく特定することもできる。大陸移動や堆積環境の違 いが各地の鉄鉱石成分の違いを生み出している。

現在、鉄鋼製品の原料として採掘されている鉄鉱石の

地球表層岩石の年代分布 **19 億年前の超大陸ローレンシア**図 3 図4 太古代に誕生 した地層に多 くの鉄分が含 まれる。 ■太古代 原生代 頭生代 頭生代 (出典: Newton 1995年7月号) 豊富な鉄鉱石を含んだ太古代の 鉄鉱石の縞状の地層(西オーストラリアの例) 写直 3 ローレンシア大陸(図3) は、その 後の大陸移動によって分断され、 比較的新しい時代に生成した層が 付加された。その後海底の隆起な どにより局所的に鉄鉱床が表層に 黒い線部分に さらに縞状に 盛り上がった現在の岩石分布を生 高Fe鉄鉱石層 み出した(図4)。鉄鉱床は、かつて が分布 海底で堆積した証として細かい縞

70%はBIFであり、特に、オーストラリアやブラジルで 採掘される鉄鉱石は鉄分が多い(約62%)。また今日まで、 BIFに限らず、各地域の地質学的特徴に応じてさまざまな 地層から採掘されてきている。日本でも1884年から1993 年まで、岩手県・釜石鉱山などにおいて鉄鉱石が採掘され ていたが、火成岩起源や新生代(約6.500万年前)以降に堆 積した比較的新しい地層から掘られていた。日本の鉱山の 鉄鉱石は鉄の純度がそれほど高くないが(約32%)、Fe換 算で累計約3,000万トン産出した(表1)。

技術進歩とともに増え続ける 鉄の利用可能な埋蔵量

鉄鉱石には生成環境の違いによって、赤鉄鉱、磁鉄鉱、 褐鉄鉱などいくつかの種類があるが、太古代に生まれた鉄 鉱床(BIF)は主に赤鉄鉱でできている(※1)。現代の高炉法 による製鉄では、鉄鉱床の表土や岩石を除去した後に、地 面から直接掘り出す「露天掘り」で大量に採掘できるBIF の赤鉄鉱を主要原料として使用してきた(写真4)。

現在、世界で確認されている鉄の埋蔵量は3,700億トン で、その内1,700億トンが技術的、経済的に見て(採算の取 れる範囲で) 採掘可能な量とされている。地表から盛り上 がっている鉱山や深度200~300m程度の場所を掘削する だけでそれだけの鉄資源を手に入れることができる。

さらに、地球の地殻内に存在すると考えられている資源 量は控えめに見ても数兆 t になる。今後の資源需要変化に 伴って、ボーリング (試錐探鉱) などによる確認埋蔵量も変 わるため、利用可能な資源量を正確に特定することはでき ないが、現在の18億トン/年の採掘量を基準として、今後、 仮に鉄の生産量が2%ずつ増えたとしても、数百年という 長期間にわたり比較的地表から近い層で採掘することがで きるという試算があり、技術革新や新たな埋蔵場所の発見 により、将来的に確認埋蔵量はさらに増加すると考えられ ている。

採掘場所の探索は、従来から、広域の地質で太古代の地 層が存在することが知られている地域を精査して、鉄鉱床 を発見することから始まる。地質専門家の地道な地表探査 や、上空からのリモートセンシング(※2)などの幅広い探査 技術が適用され、また、上空から重力計で測定することで 比重の高い鉄鉱石の堆積地域を特定する手法も用いられて いる。BIFが地表部にある場合、表面の軽い物質は雨など で流され、赤鉄鉱の赤い地肌が露出して樹木が繁殖してい ないため、目視で採掘場所が特定されるケースも多い。西 オーストラリアやブラジルではこうした探索方法により、 従来から掘削しているBIF層地域に加えて、周囲に点在す る鉄分の高い鉱山を見つけて新たに採掘する動きが活発化 している(図5)。

大規模なインフラを必要とする 鉱山開発

一方、新規鉄鉱石鉱山の開発には、大規模なインフラ

日本の鉄鉱山の生産実績

地域	鉱床名	生産期間		粗鉱生産量	粗鉱品位	Fe 生産量
		開始年	終了年	千t	Fe%	千t
北海道	倶知安	1898	1973	6,183	50.9	3,147
	徳舜瞥	1913	1972	1,587	41.1	652
岩手	釜石	1892	1993	50,000	29.8	14,900
群馬	群馬鉄山	1943	1985	2,260	48.8	1,103
新潟	赤谷	1940	1973	2,220	45.1	1,001
岡山	柵原	1884	1991	25,000	30.0	7,500
計				87,250	32.4%	28,304

(JOGMEGデータより作成)

表 1

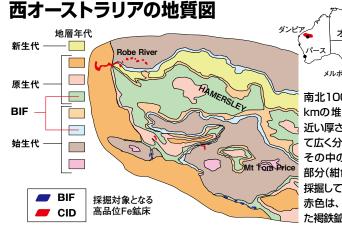


図 5 メルボルン

南北100km、東西300 kmの堆積盆に1,000m 近い厚さの BIF が褶曲し て広く分布し(緑と空色)、 その中のFeが高くなった 部分(紺色)を中心に現在 採掘している。

赤色は、BIF が再堆積し た褐鉄鉱鉱床 (CID)。

露天掘りの鉱山 (西オーストラリア)

写真 4

採掘後の輸送例

写真 5

採掘された鉄鉱石を運搬するトラックから荷台だけをはずして 台車に乗せて一般道路を輸送する。

- ※ 1 鉄鉱石は化学成分組成によって赤鉄鉱(ヘマタイト、Fe₂O₂)、磁鉄鉱(マグネタイト、Fe₂O₂)、褐鉄鉱(FeO(OH)・nH₂O または針鉄鉱:ゲーサイト、FeOOH) などに分けられる。
- ※2 リモートセンシング:人工衛星などにより、地表から反射・放射される種々の波長の電磁波を測定し、コンピューターで処理して地表の状態を映像としてとらえること。

投資が必要となる。具体的には、山元(鉱山)での大型採 掘設備、鉄道・港湾などの大規模輸送・出荷インフラ、 粗鉱を成品に精製する破砕・選鉱処理設備などへの投資 である。例えば、西オーストラリアの大規模鉱山である マウント・ニューマンでは、鉱山から港までの間426km に鉄道を敷設し、1両当たり積載量が120トンの車両が 200以上連結された貨車によって、大量の輸送が行われ ている(図6、写真5、6、7)。

近年中国・インドなどを中心に鉄鋼需要が急増し、今 後も高い需要レベルが継続すると見込まれる中で、大規 模なインフラ投資を伴う新規鉱山開発は、需要急増に見 合うスピードでは進まず、足元では世界的に鉄鉱石需給 はタイト化し、価格高騰を招いている(グラフ1)。

こうした中で現在、既存鉱山の周辺鉱床の開発ととも に、大規模投資を伴う新規鉱山の開発が検討・推進され ている。

鉄鉱石の品質劣化に対応する 技術開発に挑む

高炉法による製鉄が始まった当初は、鉄の需要地の近く にある鉄鉱山がその原料を担ったが、20世紀後半から現在 まで、新日鉄をはじめとする鉄鋼会社は、先述した西オー ストラリアや、ブラジルのカラジャス鉱山など鉄の純度が 高い鉄鉱石 (Fe60数%) が堆積している鉱山から高品質の 鉄鉱石を輸入し、資源として利用してきた。しかし今後は、

比較的鉄分純度が高い従来からの山元でも採掘が継続され るものの、シリカや不純物が比較的多い層を採掘せざるを 得ず、採掘場所や品質の多様化・劣化が進むことは避けら れない(表2)。

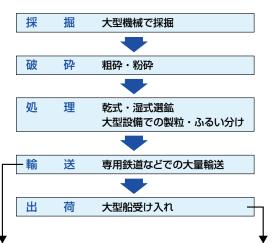
鉄鉱石に含まれるシリカ、アルミナなどの鉄以外の固体 成分(脈石)が多いと、製銑工程で鉄鉱石がなかなか溶け ず還元しにくく、鉄鋼製品の品質や生産効率に悪影響を及 ぼす。今後は山元での選鉱強化による不純物の除去や製銑 工程におけるさらなる技術的対策が求められる。

新日鉄ではこうしたトレンドを背景に、従来から品質の 異なる鉄鉱石のブレンドや事前処理の技術開発など、製銑 プロセスの改良・革新に積極的に取り組んできた。

次回は、製銑工程における高炉操業技術や原料改質技術、 副原料の活用など、多様な品質の鉄鉱石を使いこなすため の技術的挑戦について紹介する。

監修 新日本製鉄(株)

原料第二部審議役(資源調查) 兼 原料第一部審議役(石炭資源調査) 長野 研一(ながの・けんいち)


プロフィール 1950年生まれ、大分県出身。 1976年入社。主に原料資源調査に従事。 2000年原料第二部部長。 2006年より現職。

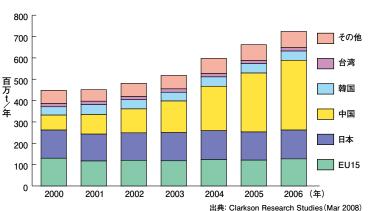

グラフ 1

表 2

鉄鉱石の採掘から輸送の流れ

鉄鉱石の海上貿易量推移

鉄道 写真 6 鉄鉱石輸送船写真 7

(BRASIL MARU)

図6

粗鉱 Fe と成品品質の例

	粗鉱	成品品質						
	Fe%	Fe	SiO ₂	Al ₂ O ₃	Р	−0.15mm%*		
低 Fe BIF	25	63.0	3.8	0.14	0.013	100		
オーストラリア	62	61.4	3.4	2.30	0.065	23		
ブラジル (カラジャス)	67	67.0	0.9	0.95	0.032	15		
ブラジル(南部)	58	66.0	3.5	0.70	0.027	30		

※粉鉱の中の微粉の割合。この割合が高いと製鉄(焼結)の生産効率に悪影響を及ぼす。